关闭

HDU1227 Fast Food

373人阅读 评论(0) 收藏 举报
分类:

题目大意

n个饭店,要建m个仓库,现在给所有饭店之间的距离,问m个仓库怎么建能建的最小?输出最小值

解题思路

比较经典的动态规划,dp[i][j]表示的是前i个饭店,建j个原料站的最小距离
状态转移方程是:dp[i][j] = min(dp[k][j - 1] + w[k, j])
其中w[i,k]表示第i个快餐店到k个快餐店之间均没有原料站,而且原料站位于i、k时,i~k个快餐店获取原料的距离之和

AC代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 210;
const int INF = ~0u >> 1;
int w[maxn][maxn], dp[maxn][35], a[maxn];
int n, m;
int main(){
    int kase = 1; 
    while(scanf("%d%d", &n, &m) == 2 && n && m){
        memset(dp, 0, sizeof(dp));
        for (int i = 0; i < n; i++) scanf("%d", &a[i]);
        for (int i = n - 1; i >= 0; i--)
            a[i] = a[i] - a[0] + 1;
        for (int i = 0; i < n; i++)
            for (int j = i; j < n; j++){
                w[i][j] = 0;
                for (int k = i; k <= j; k++)
                    w[i][j] += min(a[k] - a[i], a[j] - a[k]);
            }
        for (int i = 0; i < n; i++)
            for (int j = 0; j <= i; j++)
                dp[i][1] += a[i] - a[j];
        for (int j = 2; j <= m; j++)
            for (int i = j - 1; i < n; i++){
                dp[i][j] = INF;
                for (int k = j - 2; k < i; k++)
                    dp[i][j] = min(dp[i][j], dp[k][j - 1] + w[k][i]);
            }
        printf("Chain %d\n", kase++);
        printf("Total distance sum = ");
        int ans = INF;
        for (int i = 0; i < n; i++){
            int s = 0;
            for (int j = i + 1; j < n; j++)
                s += a[j] - a[i];
            ans = min(ans, s + dp[i][m]);
        }
        printf("%d\n\n", ans);
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:73808次
    • 积分:1975
    • 等级:
    • 排名:第19945名
    • 原创:129篇
    • 转载:4篇
    • 译文:0篇
    • 评论:19条
    最新评论