最大连续子序列乘积

给定一个包含正数、负数和0的整数序列,目标是找到其最大连续子序列乘积。例如,对于序列{3, -4, -5, 6, -2},最大乘积为360。与求和问题不同,处理负数和0增加了复杂性。通过使用Max和Min数组,可以动态规划求解此问题,其中Max[i]表示以a[i]结束的最大乘积,Min[i]表示以a[i]结束的最小乘积。" 131001733,18870520,Python错误解决:调试、日志与单元测试,"['Python', '开发语言', '错误处理', '调试', '测试']
摘要由CSDN通过智能技术生成

问题描述

给定一个整数序列(可能有正数,0和负数),求它的一个最大连续子序列乘积。比如给定数组a={3, -4, -5, 6, -2},则最大连续子序列乘积为360,即3*(-4)*(-5)*6=360。


分析

求最大连续子序列乘积与最大连续子序列和问题有所不同,因为其中有正有负还有可能有0。

假设数组为a[],直接利用动归来求解,考虑到可能存在负数的情况,我们用Max[i]来表示以a[i]结尾的最大连续子序列的乘积值,用Min[i]表示以a[i]结尾的最小的连续子序列的乘积值,那么状态转移方程为:

       Max[i]=max{a[i], Max[i-1]*a[i], Min[i-1]*a[i]};
       Min[i]=min{a[i], Max[i-1]*a[i], Min[i-1]*a[i]};
初始状态为Max[0]=Min[0]=a[0]。代码如下:
int max_multiple(int *a,int n)
{
    int *Min = new int[n]();
    int *Max = new int[n]();
    Min[0]= 
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值