问题描述
给定一个整数序列(可能有正数,0和负数),求它的一个最大连续子序列乘积。比如给定数组a={3, -4, -5, 6, -2},则最大连续子序列乘积为360,即3*(-4)*(-5)*6=360。
分析
求最大连续子序列乘积与最大连续子序列和问题有所不同,因为其中有正有负还有可能有0。
假设数组为a[],直接利用动归来求解,考虑到可能存在负数的情况,我们用Max[i]来表示以a[i]结尾的最大连续子序列的乘积值,用Min[i]表示以a[i]结尾的最小的连续子序列的乘积值,那么状态转移方程为:
Max[i]=max{a[i], Max[i-1]*a[i], Min[i-1]*a[i]};
Min[i]=min{a[i], Max[i-1]*a[i], Min[i-1]*a[i]};
初始状态为Max[0]=Min[0]=a[0]。代码如下:
int max_multiple(int *a,int n)
{
int *Min = new int[n]();
int *Max = new int[n]();
Min[0]=