动态数组

转载 2007年09月14日 10:44:00
 动态数组


数组到底应该有多大才合适,有时可能不得而知。所以希望能够在运行时具有改变数组大小的能力。

动态数组就可以在任何时候改变大小。在 Visual Basic 中,动态数组最灵活、最方便,有助于有效管理内存。例如,可短时间使用一个大数组,然后,在不使用这个数组时,将内存空间释放给系统。

如果不用动态数组,就要声明一个数组,它的大小尽可能达到最大,然后再抹去那些不必要的元素。但是,如果过度使用这种方法,会导致内存的操作环境变慢。

要创建动态数组,请按照以下步骤执行:

(如果希望数组为公用数组,则)用 Public 语句声明数组,或者,(如果希望数组为模块级,则)在模块级用 Dim 语句声明数组,或者(如果希望数组为局部数组,则)在过程中用 Static 或 Dim 语句声明数组。给数组附以一个空维数表,这样就将数组声明为动态数组。
Dim DynArray ()

用 ReDim 语句分配实际的元素个数。
ReDim DynArray (X + 1)

ReDim 语句只能出现在过程中。与 Dim 语句、Static 语句不同,ReDim 语句是一个可执行语句,由于这一语句,应用程序在运行时执行一个操作。

ReDim 语句支持这样的语法,它与固定数组中使用的语法相同。对于每一维数,每个 ReDim 语句都能改变元素数目以及上下界。但是,数组的维数不能改变。

ReDim DynArray (4 to 12)

例如,用第一次声明在模块级所建立的动态数组 Matrix1:

Dim Matrix1 () As Integer

然后,在过程中给数组分配空间:

Sub CalcValuesNow ()
   .
   .
   .
   ReDim Matrix1 (19, 29)
End Sub

这里的 ReDim 语句给 Matrix 分配一个 20 × 30 的整数矩阵(元素总大小为 600)。还有一个办法,用变量设置动态数组的边界:

ReDim Matrix1 (X, Y)

注意 您可以将字符串赋值给大小可变的字节数组。一个字节数组也可以被赋值给一个可变长的字符串。一定要注意字符串中的字节数会随平台而变化。同一个字符串在 Unicode 平台上的字节数是它在非 Unicode 平台上的两倍。

保留动态数组的内容
每次执行 ReDim 语句时,当前存储在数组中的值都会全部丢失。Visual Basi 重新将数组元素的值置为 Empty(对 Variant 数组)、置为 0(对 Numeric 数组)、置为 零长度字符串(对 String 数组)或者置为 Nothing(对于对象的数组)。

在为新数据准备数组,或者要缩减数组大小以节省内存时,这样做是非常有用的。有时希望改变数组大小又不丢失数组中的数据。使用具有 Preserve 关键字的 ReDim 语句就可做到这点。例如,使用 UBound 函数引用上界,使数组扩大、增加一个元素,而现有元素的值并未丢失:

ReDim Preserve DynArray (UBound (DynArray) + 1)

在用 Preserve 关键字时,只能改变多维数组中最后一维的上界;如果改变了其它维或最后一维的下界,那么运行时就会出错。所以可这样编程:

ReDim Preserve Matrix (10, UBound (Matrix, 2) + 1)

而不可这样编程:

ReDim Preserve Matrix (UBound (Matrix, 1) + 1, 10)

详细信息 关于动态数组的更详细信息,请参阅语言参考中的“ReDim 函数”。关于对象数组,请参阅“用对象编程”。

相关文章推荐

动态数组末班类源代码

动态数组分配内存

#include"stdlib.h"#include"stdio.h"main(){int i,size;int *pa;pa=(int *)malloc(sizeof(int)*size);for(...

动态数组运用

  • 2014-04-10 22:07
  • 194KB
  • 下载

动态数组

1.变长一维数组           这里说的变长数组是指在编译时不能确定数组长度,程序在运行时需要动态分配内存空间的数组。实现变长数组最简单的是变长一维数组,你可以这样做:    ...

ALLOCATE语句分配FORTRAN动态数组方法

数组的动态分配 a)    可分配数组 数组可以是静态的也可以是动态的。如果数组是静态的,则在编译时就被分配了固定的储存空间,并且直到程序退出时才被释放。程序运行时静态数组的大小不能改变。...

静态和动态数组

  • 2012-03-29 21:26
  • 776KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)