Struck: Structured Output Tracking with Kernels中用到的样本采样方法详解

原创 2016年08月31日 14:58:41
    最近正在学习Struck这篇文章,其中用到了极坐标采样的方式,matlab版本这部分的代码以及我的详细注释是这样的:
<span style="font-size:14px;">%(极坐标取样)
%nr为半径从里到外延伸的要分的步数
%nt为圆周旋转的步数
%以boundingBox为中心,半径分5步从里到外延伸,圆周分16步旋转
%选取5 * 16 = 80个sample,算上boundingbox总共81个sample。其中半径为奇数步时,角度要加半步。
function samples = sampler_radial_samples(boundingBox, radius, nr, nt)
    index = 1;
    samples{index} = boundingBox; %第一个sample为boundingbox
    rstep = radius / nr;    %半径从里到外延伸每一步走的像素
    tstep = 2 * pi / nt;   %圆周上旋转每一次的角度,单位旋转角度
    for ir = 1 : nr   %遍历从里到外延伸的步数 
        phase = mod(ir, 2) * tstep / 2;   %mod取余,也就是半径为偶数步时,phase为0;半径为奇数步时,phase为单位旋转角度的一半
        for it = 0 : nt - 1  %遍历圆周旋转的步数,从0开始,到15
            dx = ir * rstep * cos(it * tstep + phase);   %x坐标增量=第几步*单位步长*cos(第几个旋转角*单位旋转角度+phase)
            dy = ir * rstep * sin(it * tstep + phase); 
            s.x = boundingBox.x + dx;    %得到移动后的移动窗口的x坐标
            s.y = boundingBox.y + dy;    %得到移动后的移动窗口的y坐标
            s.w = boundingBox.w;
            s.h = boundingBox.h;     %移动窗口的高度和宽度保持不变
            index = index + 1;
            samples{index} = s;         %记录移动后的移动窗口信息,也就是此时这个样本的位置     
        end
    end  %以上过程其实获取了图像中的 nr*nt+1 个样本框</span>

     光看代码其实对采样的情况理解得不太直观,所以我运用matlab写了生成gif动画的程序,把采样的结果很直观的表现出来,代码如下:

 %极坐标取样得到的sample是怎么在boundingbox周围的呢??画出来看一下
    num = length(samples);   %获取samples的数目
    filename = 'D:\MenghanZhou\matlab_work\ICCV11_struck-matlab\ICCV11_struck-matlab\gif\sampler_radial_samples.gif';
    figure;
    axis ij
    axis([-50 160 -50 160]);  % 设置坐标轴在指定的区间  
    title='极坐标取样过程';
    hold on;
    for i = 1 : num   %遍历samples的数目
        s = samples{i};
        rectangle('Position',[s.x,s.y,s.w,s.h],'EdgeColor','r');  %画出每个sample框
        scatter(s.x,s.y,'bo');  %标出每个sample框的左上角
        pause(.5);
        drawnow;  %动态更新
        
        %保存成gif动画
        f = getframe(gcf);
        imind = frame2im(f);
        [imind,cm] = rgb2ind(imind,256);
        if i == 1
            imwrite(imind,cm,filename,'gif', 'Loopcount',inf,'DelayTime',0.2);
        else
            imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0.2);
        end
        
    end

    这样,就生成了gif动画,其中第一个sample框是上一帧目标的真实位置,然后框的左上角(用蓝色圆圈标出)以极坐标的形式移动,半径为奇数步时,角度要加半步,这样在boundingbox周围生成了5*16=80个sample框,也就是一共81个sample框(加上第一个boundingbox框)



非常喜欢matlab的绘图功能,方便对代码的理解,也方便思路展示~~微笑



版权声明:本文为博主原创文章,未经博主允许不得转载。

Struck: Structured Output Tracking with Kernels

目前正在学习Struck SVM,拜服于作者的新颖思路,之后会时常查阅,所以把整篇paper翻译了一遍,以便理解与进步。...

Struck Structured Output Tracking with Kernels阅读笔记

今天讲讲struck,最近感觉tracking的model进步是日新月异,比如大牛Dr. Chao Ma,最近在他的homepagehttps://sites.google.com/site/chao...

Struck算法中每个sample框中矩形框的选取采样方法详解

Struck算法中通过极坐标采样方式在每个boundingbox周围得到sample框,一共得到80个sample框之后,还需要表征每一个sample框的内部特征,论文中采用了Haar-like特征。...

目标跟踪系列十二:Exploiting the Circulant Structure of Tracking-by-detection with Kernels代码关键记录

代码关键点记录:成功不远了!O(∩_∩)O 哈哈~ 1. Input : load_video_info.m 读入视频文件groundtruth_rect.txt(里面是4个一组的点,x,y...

Exploiting the Circulant Structure of Tracking-by-detection with Kernels 笔记

这是一篇ECCV2014年的paper,在这篇paper中作者提出了kernelized correlation filter,并将其应用到了tracking中,从而有了15年PAMIN的那篇文章,我...

目标跟踪系列十三:Exploiting the Circulant Structure of Tracking-by-detection with Kernels 公式详细的推导

Exploiting the Circulant Structure of Tracking-by-detection with Kernels 公式详细的推导,整个的推导过程就是这样的,我是花了几个...

Exploiting the Circulant Structure of Tracking-by-detection with Kernels代码思路

转载:http://blog.csdn.net/ikerpeng/article/details/40144497 这篇文章很赞啊!很有必要将其好好的学习,今天首先记录它的代码思路(详细的推...

目标跟踪系列十一:Exploiting the Circulant Structure of Tracking-by-detection with Kernels代码思路

这篇文章很赞啊!很有必要将其好好的学习,今天首先记录
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Struck: Structured Output Tracking with Kernels中用到的样本采样方法详解
举报原因:
原因补充:

(最多只允许输入30个字)