凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之四: General Patterns

原创 2015年07月09日 15:31:08

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写一系列关于ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法的内容。

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之四: General Patterns

本文地址:http://blog.csdn.net/shanglianlm/article/details/46807821

4- 一般模式(General Patterns)

本章主要探讨如何加速 x-和 z-更新步骤。主要考虑三种类型:quadratic objective
terms, separable objective and constraints 和 smooth objective terms.
我们首先表示 x-更新步骤为:
这里写图片描述
其中 v=Bz+cu 是一个常量。(对称适用于 z-更新步骤)

4-1 近似算子(Proximity Operator)

考虑最简单的情况 A=I,因此 x-更新步骤为
这里写图片描述
右边看做关于 u 的一个函数,标记为 proxf,ρ(v),叫做 f 关于 ρ 的近似算子(the proximity operator of f with penalty ρ )。
在变分分析,
这里写图片描述
是 f 的 Moreau envelopeMoreau-Yosida regularization,与接近点算(proximal point algorithm )的理论联系起来。因此接近算子(proximity operator)中的 x-最小化被称为接近端最小化(proximal minimization)。
当 f 足够简单时,x-update 就能评估分析。例如,f 是一个闭合非空凸集 C 的指示函数时,
x-update 为
这里写图片描述
其中 ΠC 为 C 上的映射(Euclidean范式)。等式成立与 ρ 无关。更多例子见 [41]

[41] P. L. Combettes and J. C. Pesquet, “Proximal Splitting Methods in Signal Processing,” arXiv:0912.3522, 2009.

4-2 二次型目标项(Quadratic Objective Terms)

假设 f 为(凸)二次函数,
这里写图片描述
其中 PSn+ ,对称正半定 n × n 矩阵。
假设 P+ρATA 是可逆的,x+ 是 u 的仿射函数(affine function)
这里写图片描述
换句话说,计算 x-update 等于 求解一个 关于正定系数矩阵(positive definite coefficient matrix)P+ρATAρATvq 的线性系统。

4-2-1 直接法(Direct Methods)

求解 Fx=g, 首先分解 F=F1F2FkFi 为简单矩阵,接着计算 x=F1b通过解一系列问题 Fizi=zi1 ,其中 z1=F11gx=zk

4-2-2 利用稀疏(Exploiting Sparsity)

F=P+ρATA,当 F 是稀疏时,
- if P and A are diagonal n × n matrices, then both the factor and solve costs are
O(n).
- If P and A are banded, then so is F.
- If F is banded with bandwidth k, the factorization cost is O(nk2) and the back-solve cost is O(nk). In this case, the x-update can be carried out at a cost O(nk2), plus the cost of forming F.

4-2-3 缓存分解(Caching Factorizations)

当 ρ 不变时,我们求解一些列 Fx(i)=g(i),i=1,...,N, 左边 F 一样, 右边 g(i) 变化。因此,我们可以只求一次 F。

4-2-4 矩阵求逆引理(Matrix Inversion Lemma)

矩阵求逆引理(Matrix Inversion Lemma)
这里写图片描述
当 所有的 逆元(inverses) 存在时成立。

这意味着 如果 关于 因子矩阵 P 的线性系统 能被有效地求解,和 p 较小时(至少不大于 n),x-update 可以有效地求解。

4-2-5 限制于仿射集的二次函数(Quadratic Function Restricted to an Affine Set)

这里写图片描述
其中 x+ 是关于 u 的仿射函数,更新涉及解一个 KKT(Karush-Kuhn-Tucker)系统,
这里写图片描述

4-3 平滑目标项(Smooth Objective Terms)

4-3-1 迭代求解(Iterative Solvers)

迭代求解。

4-3-2 提前终止(Early Termination)

提前终止迭代。

4-3-3 热启动(Warm Start)

初始化迭代方法。

4-3-4 二次型目标项(Quadratic Objective Terms)

当 f 为二次型时,在 x-update 使用迭代方法也比直接法要好。

4-4 分解(Decomposition)

4-4-1 块可分离(Block Separability)

当 x 块可分, f 关于 x 的块可分也可块可分,
这里写图片描述
剩余其他也可分,求解可以并行。

4-4-2 组件可分离(Component Separability)

这里写图片描述
其中 fi:RRATA 是对角矩阵。
x- 最小化可以通过 n 标量最小化 执行。

4-4-3 软阈值(Soft Thresholding)

考虑 f(x)=λ||x||1(with  λ>0)A=Ixi-update 为
这里写图片描述
它的解为:
这里写图片描述
其中 软阈值操作(soft thresholding operator) S 为
这里写图片描述
或者
这里写图片描述
表示为 shrinkage operator (i.e., moves a point toward zero) 形式
这里写图片描述

In the language of §4.1, soft thresholding is the proximity operator of the L1 norm.

参考或延伸材料:
[1]Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
[2] 凸优化讲义
[3] A Note on the Alternating Direction Method of Multipliers

版权声明:本文为博主原创文章,欢迎转载,转载请注明出处。

相关文章推荐

凸优化交替方向乘子法

原文在这里:http://blog.csdn.net/shanglianlm/article/details/46808793 最近开始对凸优化(convex optimization)中的ADM...
  • jzwong
  • jzwong
  • 2016-05-24 15:51
  • 2033

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization ...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之二:Precursors

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之二:Precursors [本文地址:http://blog.csdn...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之六: L1-Norm Problems

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十: Implementation

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十: Implementation本文地址:10 Implementa...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十一:Numerical Examples

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十一:Numerical Examples本文地址:11 Numeric...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM 本文地址:http://blog.csdn.net/sh...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)