凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之八: Distributed Model Fitting

原创 2015年07月08日 20:07:28

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之八: Distributed Model Fitting

本文地址:

8 Distributed Model Fitting

8.1 Examples

8.2 Splitting across Examples

8.3 Splitting across Features

版权声明:本文为博主原创文章,欢迎转载,转载请注明出处。

相关文章推荐

BP神经网络算法之matlab具体实现

之前的几篇博客的一个共同点就是梯度下降法,梯度下降法是用来求解无约束最优化问题的一个数值方法,简单实用,几乎是大部分算法的基础,下面来利用梯度下降法优化BP神经网络。 已经有证明过,三层BP神经网络...

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式...

it转行

对工作没兴趣、感觉没发展、追求高薪等很多原因都会促使人们考虑转行。俗话说“隔行如隔山”,转行就象从一座山走下来,重新向另一座山攀登。这意味着中断现有的职业,不仅之前积累的经验、知识、人脉 转行现象在程...

ADMM算法

ADMM算法是机器学习中比较广泛使用的约束问题最优化方法,它是ALM算法的一种延伸,只不过将无约束优化的部分用块坐标下降法(block coordinate descent,或叫做 alternati...

python2.5与python3虚拟环境使用

为了在python2.7版本的环境下使用python3的一些功能,但并不想安装新的python,下面介绍步骤: 1:打开cmd(开始–>运行) 2:输入python,查看自己的python版本 ...

OTB Results

Share results for more recent trackers.  All results in [Baidu Yun]  Benchmark Results The tr...

ADMM求解各种优化函数及Matalb例子

 MATLAB scripts for alternating direction method of multipliers S. Boyd, N. Parikh, E. Chu, B. P...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)