凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM

原创 2015年07月08日 21:20:14

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写一系列关于ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法的内容。

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM

本文地址:http://blog.csdn.net/shanglianlm/article/details/46808793

3- 交替方向乘子算法(Alternating Direction Method of Multipliers)

如前文所述,ADMM是一个旨在将对偶上升法的可分解性和乘子法的上界收敛属性融合在一起的算法。

3-1 算法(Algorithm)

设有如下优化问题:

min f(x)+g(z)  s.t.  Ax+Bz=c        (3.1)

如同乘子法中一样,我们获得它的增广拉格朗日形式为:
Lρ(x,z,λ)=f(x)+g(z)+yT(Ax+Bzc)+(ρ/2)||Ax+Bzc||22

那么它的迭代方式为:
xk+1=argminxLρ(x,zk,λk)        (3.2)
zk+1=argminzLρ(xk+1,z,λk)        (3.3)
λk+1=λk+ρ(Axk+1+Bzk+1c)        (3.4)

其中增广拉格朗日参数ρ>0

乘子法关于(3.1)的求解
这里写图片描述
它要求对两个原始变量联合最小化。

3-1-1 缩放形式(Scaled Form)

定义残差 r=Ax+Bzc,有
这里写图片描述
其中 u=(1/ρ)yscaled dual variable。因此有
这里写图片描述
定义在 k 次迭代的残差为 rk=Axk+Bzkc, 有
这里写图片描述

3-2 收敛(Convergence)

这里写图片描述

  • 收敛到一个高的精度要求很多次迭代;
  • 但几十次迭代就可以达到一个合理的精度(类似于共轭梯度法(conjugate gradient method));
  • 可以和其他算法组合来产生一个高的精度。

3-3 优化条件和停止准则(Optimality Conditions and Stopping Criterion)

3-3-1 优化条件(Optimality Conditions)

ADMM问题(3.1)的充分必要优化条件为:原始可行性(primal feasibility)
这里写图片描述
和对偶可行性(dual feasibility)
这里写图片描述

3-3-2 停止准则(Stopping Criterion)

原始残差:rk+1=Axk+1+Bzk+1c<ϵprimal
对偶残差:sk+1=ρATB(zk+1zk)<ϵdual

3-4 扩展和变化(Extensions and Variations)

3-4-1 不同的惩罚参数(Varying Penalty Parameter)

这里写图片描述

[96] B. S. He, H. Yang, and S. L. Wang, “Alternating direction method with selfadaptive p enalty parameters for monotone variational inequalities,” Journal of Optimization Theory and Applications, vol. 106, no. 2, pp. 337–356, 2000.
[169] S. L. Wang and L. Z. Liao, “Decomposition method with a variable parameter for a class of monotone variational inequality problems,” Journal of Optimization Theory and Applications, vol. 109, no. 2, pp. 415–429, 2001.

3-4-2 更一般的增广项(More General Augmenting Terms)

取代 二次项(ρ/2)||r||22(1/2)rTPr,其中 P 是一个对称正定矩阵(symmetric positive definite matrix)。

3-4-3 过松弛(Over-relaxation)

这里写图片描述

[63] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal p oint algorithm for maximal monotone op erators,” Mathematical Programming, vol. 55, pp. 293–318, 1992.
[64] J. Eckstein and M. C. Ferris, “Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control,” INFORMS Journal on Computing, vol. 10, pp. 218–235, 1998.
[59] J. Eckstein, “Parallel alternating direction multiplier decomposition of convex programs,” Journal of Optimization Theory and Applications, vol. 80, no. 1, pp. 39–62, 1994.

3-4-4 不精确最小化(Inexact Minimization)

甚至当 x 和 z 最小化步骤不精确执行时, ADMM也会收敛。

[63] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal p oint algorithm for maximal monotone op erators,” Mathematical Programming, vol. 55, pp. 293–318, 1992.
[89] E. G. Gol’shtein and N. V. Tret’yakov, “Modified Lagrangians in convex programming and their generalizations,” Point-to-Set Maps and Mathematical Programming, pp. 86–97, 1979.

3-4-5 有序更新(Update Ordering)

执行 x-, z- 和 y-更新步骤不同的顺序或者多次。

[146] A. Ruszczy´nski, “An augmented Lagrangian decomposition method for block diagonal linear programming problems,” Operations Research Letters, vol. 8, no. 5, pp. 287–294, 1989.

参考或延伸材料:
[1]Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
[2] 凸优化讲义
[3] A Note on the Alternating Direction Method of Multipliers

版权声明:本文为博主原创文章,欢迎转载,转载请注明出处。 举报

相关文章推荐

it转行

对工作没兴趣、感觉没发展、追求高薪等很多原因都会促使人们考虑转行。俗话说“隔行如隔山”,转行就象从一座山走下来,重新向另一座山攀登。这意味着中断现有的职业,不仅之前积累的经验、知识、人脉 转行现象在程...

ADMM算法

ADMM算法是机器学习中比较广泛使用的约束问题最优化方法,它是ALM算法的一种延伸,只不过将无约束优化的部分用块坐标下降法(block coordinate descent,或叫做 alternati...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

python2.5与python3虚拟环境使用

为了在python2.7版本的环境下使用python3的一些功能,但并不想安装新的python,下面介绍步骤: 1:打开cmd(开始–>运行) 2:输入python,查看自己的python版本 ...

OTB Results

Share results for more recent trackers.  All results in [Baidu Yun]  Benchmark Results The tr...

ADMM求解各种优化函数及Matalb例子

 MATLAB scripts for alternating direction method of multipliers S. Boyd, N. Parikh, E. Chu, B. P...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十: Implementation

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十: Implementation本文地址:10 Implementa...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十一:Numerical Examples

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之十一:Numerical Examples本文地址:11 Numeric...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)