【第22期】观点:IT 行业加班,到底有没有价值?

项目4 - 利用遍历思想求解图问题(1-5)

原创 2015年11月21日 18:37:18

问题及代码:

/*
Copyright (c)2015,烟台大学计算机与控制工程学院
All rights reserved.
文件名称:第十二周项目4 - 利用遍历思想求解图问题.cpp
作    者:刘强
完成日期:2015年11月21日
版 本 号:v1.0

问题描述: 假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。 
	   (1)设计一个算法,判断顶点u到v是否有简单路径 
	   (2)设计一个算法输出图G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。 
	   (3)输出从顶点u到v的所有简单路径。 
	   (4)输出图G中从顶点u到v的长度为s的所有简单路径。 
	   (5)求图中通过某顶点k的所有简单回路(若存在)  
输入描述:若干测试数据。
程序输出:相应的数据输出。 
*/

(1)

1.main函数:

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    HasPath(G, 1, 0);
    HasPath(G, 4, 1);
    return 0;
}

2.源函数:
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
    int w;
    ArcNode *p;
    visited[u]=1;
    if(u==v)
    {
        has=true;
        return;
    }
    p=G->adjlist[u].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            ExistPath(G,w,v,has);
        p=p->nextarc;
    }
}

void HasPath(ALGraph *G,int u,int v)
{
    int i;
    bool flag = false;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    ExistPath(G,u,v,flag);
    printf(" 从 %d 到 %d ", u, v);
    if(flag)
        printf("有简单路径\n");
    else
        printf("无简单路径\n");
}

运行结果:


(2)

main函数:

int main()
{

    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    APath(G, 1, 0);
    APath(G, 4, 1);
    return 0;
}

2.源文件:
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
    //d表示path中的路径长度,初始为-1
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;  //路径长度d增1,顶点u加入到路径中
    if (u==v)   //找到一条路径后输出并返回
    {
        printf("一条简单路径为:");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
        return;         //找到一条路径后返回
    }
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
    while (p!=NULL)
    {
        w=p->adjvex;    //相邻点的编号为w
        if (visited[w]==0)
            FindAPath(G,w,v,path,d);
        p=p->nextarc;   //p指向顶点u的下一个相邻点
    }
}

void APath(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

运行结果:

(3)

1.main函数:

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispPaths(G, 1, 4);
    return 0;
}


2.源函数:

int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d>1)            //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            FindPaths(G,w,v,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}


void DispPaths(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d的所有路径:\n",u,v);
    FindPaths(G,u,v,path,-1);
    printf("\n");
}
运行结果:


(4)

1.main函数:

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispSomePaths(G, 1, 4, 3);
    return 0;
}


2.源文件:

int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
    while (p!=NULL)
    {
        w=p->adjvex;            //w为顶点u的相邻点
        if (w==v && d>0)        //找到一个回路,输出之
        {
            printf("  ");
            for (i=0; i<=d; i++)
                printf("%d ",path[i]);
            printf("%d \n",v);
        }
        if (visited[w]==0)          //w未访问,则递归访问之
            DFSPath(G,w,v,path,d);
        p=p->nextarc;       //找u的下一个邻接顶点
    }
    visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
    int path[MAXV],i;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("经过顶点%d的所有回路\n",k);
    DFSPath(G,k,k,path,-1);
    printf("\n");
}


运行结果:


(5)

1.main函数:

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,1,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,1},
        {1,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    FindCyclePath(G, 0);
    return 0;
}


2.源文件:

int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
    while (p!=NULL)
    {
        w=p->adjvex;            //w为顶点u的相邻点
        if (w==v && d>0)        //找到一个回路,输出之
        {
            printf("  ");
            for (i=0; i<=d; i++)
                printf("%d ",path[i]);
            printf("%d \n",v);
        }
        if (visited[w]==0)          //w未访问,则递归访问之
            DFSPath(G,w,v,path,d);
        p=p->nextarc;       //找u的下一个邻接顶点
    }
    visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
    int path[MAXV],i;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("经过顶点%d的所有回路\n",k);
    DFSPath(G,k,k,path,-1);
    printf("\n");
}


运行结果:


知识点总结:
图的遍历。
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

第十二周项目4-利用遍历思想求解图问题(1-5)

/* Copyright (c)2015,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:第十二周项目4-利用遍历思想求解图问题(1-5...

编程新手导论(转载)

第二部分 导论,这一部分主要是关于编程的导论, (要懂得一点思想具备一点常识)《设计,编码,,与软工》(编程与思想)这一章解释了三种思想,原语,抽象,组合,,和软件开发的二个重要过程,,软件工程的相关概念,是编程入门的关键 (要懂得一点领域内的数学)《数学与算法》(编程与数学)计算机整个就是架构...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

第十二周--项目4-利用遍历思想求解图问题(1)-(5)

问题描述及代码: /* Copyright (c)2015,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:第十二周项目4 - 利用遍历思想求解图问题.cpp...
  • lct97
  • lct97
  • 2016-11-14 17:20
  • 274

ACM题库以及培养策略

ACM大量习题题库 ACM大量习题题库 现在网上有许多题库,大多是可以在线评测,所以叫做Online Judge。除了USACO是为IOI准备外,其余几乎全部是大学的ACM竞赛题库。 USACO http://ace.delos.com/usacogate 美国著名在线题库,专门为信息...

十二周项目四--利用遍历思想求解图问题(1-5)

问题及代码 /* Copyright (c)2016,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:第十二周项目4 - 利用遍历思想求解图问题(1-5...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)