Arcgis插值方法简介

原创 2016年08月29日 14:58:46

地统计是一个方法集,用于估计未进行采样的位置处的值并评估结果估计的不确定性。这类函数在决策过程中显得至关重要,因为实际操作中不可能对感兴趣区的每个位置点都进行采样。但要特别注意的是,这些方法只是用于构造现实模型(即您感兴趣的现象)的一种手段。至于如何构建能够满足您的特定需要的模型并能够为正确合理制定决策提供必要的信息,则需要由您自己(实践者)决定。要构建良好的模型,很大程度上取决于您对现象的观察理解、采样数据的获取方式和它所表示的内容,以及您希望模型提供的信息

插值的方法有很多。有些方法十分灵活,可适用于各种不同类型的采样数据。有些方法则具有较大的局限性,要求数据必须满足特定条件。例如,克里金方法十分灵活,但在克里金系列方法的操作过程中,采样数据必须满足不同程度的条件才能使结果输出有效。Geostatistical Analyst 提供了以下几种插值方法:

  • 全局多项式
  • 局部多项式
  •  反距离权重
  • 径向基函数
  • 含障碍的扩散插值法
  • 含障碍的核插值法
  • 普通克里金法
  • 简单克里金法 
  • 泛克里金法 
  • 指示克里金法 
  • 概率克里金法
  • 析取克里金法
  • 高斯地统计模拟 
  • 面插值
  • 经验贝叶斯克里金法

每种方法都有其自己的参数集,从而允许针对特殊数据集和生成的输出的要求对其进行自定义。为了对选择使用的方法提供一些指导,已根据不同的条件对这些方法进行了分类,如 Geostatistical Analyst 中提供的插值方法分类树中所示。明确定义了插值模型的开发目的且充分检查了采样数据之后,这些分类树就可引导您选择适当的方法。


版权声明:本文为生命奇迹泉原创文章,转载请注明出处生命奇迹泉http://blog.csdn.net/shengmingqijiquan 举报

相关文章推荐

ArcGIS教程:插值方法简介

地统计是一个方法集,用于估计未进行采样的位置处的值并评估结果估计的不确定性。这类函数在决策过程中显得至关重要,因为实际操作中不可能对感兴趣区的每个位置点都进行采样。   但要特别注意的是,这些方法只...

ArcGIS教程:插值方法对比

插值可以根据有限的样本数据点预测栅格中的像元值。它可以预测任何地理点数据(如高程、降雨、化学物质浓度和噪声等级等)的未知值。

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

【杂谈】MATLAB插值方法简介

在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。实例:海底探测问题某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数...

ArcGis地统计插值方法

ArcGis地统计插值方法   2013-10-21 10:38:37|  分类: ArcGis|举报|字号 订阅 地统计(如什么是地统计?专题介绍中所述)是一...

将在txt中的点数据批量arcgis插值后再输出为excel格式--未完

任务:储存在txt中的点数据进行插值,然后将插值输出成带有经纬度的excel文件。这个步骤我分解成5步 ①将点数据转换成shp文件 ②对shp文件进行插值后生成栅格文件 ③栅格转点,还是shp文...

插值方法

Inverse Distance to a Power(反距离加权插值法)”、  “Kriging(克里金插值法)”、  “Minimum Curvature(最小曲率)”、  “Modifie...

插值方法

一、写在前面 自打学习了计算方法这门课程,深刻的把数学与编程再与实际结合在一起,深深的感受到了数值分析的魅力,以及数学的奥妙,233333,数学太强大了,不啰嗦了,进入正题。 ...

ArcGIS中的Geostatistical Analyst 插值方法分类树

您必须要做的最重要决定之一就是确定开发插值模型的目标。换句话说,您需要模型提供什么信息才能做出决定?例如在公共卫生区域中,插值模型用于预测在统计意义上可与发病率产生关联的污染物等级。根据该信息可进一步...

转载 常用插值方法介绍

常用插值方法介绍 转载自:http://blog.csdn.net/comolob/article/details/5159390     Inverse Distance to a Po...

常见插值方法介绍

“Inverse Distance to a Power(反距离加权插值法)”、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”、 “Modified ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)