关闭

图像配准与匹配的区别

1715人阅读 评论(0) 收藏 举报
分类:

原出处:http://blog.csdn.net/angelazy/article/details/31733143

匹配,是寻找与一幅图相似的图像(不对寻找到的图像做矫正)。

配准,是寻找相似图像但是变形后的图像(需要做一些旋转之类的校正变换)。

融合,是多幅图像连接成一幅大图,视频集成中用的比较多。

 

图像配准

图像配准所属现代词,指的是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程。

图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。上述配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。而特征提取是配准技术中的关键,准确的特征提取为特征匹配的成功进行提供了保障。因此,寻求具有良好不变性和准确性的特征提取方法,对于匹配精度至关重要。

基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。可以用这些局部特征之间的关系描述全局特征。通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。

由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特征提取方法的计算代价通常较大,不便于实时应用。特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。因此,在图像配准领域得到了广泛应用。基于特征的图像配准方法有两个重要环节:特征提取和特征配准。 

医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。基于统计的配准方法通常是指最大互信息的图像配准方法。 

基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。然后进行采样、变换、插值、优化从而达到配准的目的。

基于互信息的配准技术属于基于像素相似性的方法。它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。 

基于互信息只依赖于图像本身的信息,不需要对图像进行特征点提取和组织分类等预处理,是一种自动而有效的配准算法。该算法可靠,对图像中的几何失真、灰度不均匀和数据的缺失等不敏感。不依赖于任何成像设备,可应用于多模态医学图像配准。基于互信息的图像配准也有其缺点,它运算量大,对噪声敏感,要求待配准图像间联合概率分布函数必须是严格正性的。

 

图像匹配(image matching)

通过对影像内容、特征、结构、关系、纹理及灰度等的对应关系,相似性和一致性分析,寻求相同影像目标的方法。影像相关是利用互相关函数,评价两块影像的相似性以确定同名点。即首先取出以待定点为中心的小区域中的影像信号,然后取出其在另一影像中相应区域的影像信号,计算二者的相关函数,以相关函数最大值对应的相应区域中心点为同名点。

影像匹配实质上是在两幅(或多幅)影像之间识别同名点. 最初的影像匹配是利用相关技术实现的,因而也有人称影像匹配为影像相关。它是图像融合、目标识别、目标变化检测、计算机视觉等问题中的一个重要前期步骤,在遥感、数字摄影测量、计算机视觉、地图学以及军事应用等多个领域都有着广泛的应用。

由于原始相片中的灰度信息可转换为电子、光学或数字等形式的信号,因而可构成电子相关、光学相关或数字相关等不同的相关方式;而由于可运用于多个领域中,影像相关所匹配的对象也是多种多样的,如卫星遥感影像、航空摄影影像、近景摄影影像等,这些原始数据往往都不是理想的数据源,因此要针对各种特点选择合适的算法进行匹配。但一般来说,无论是光学相关、电子相关还是数字相关,所匹配的对象也有不同,但其理论基础都是相同的。

影像相关是利用互相关函数,评价两块影像的相似性以确定同名点。即首先取出以待定点为中心的小区域中的影像信号,然后取出其在另一影像中相应区域的影像信号,计算二者的相关函数,以相关函数最大值对应的相应区域中心点为同名点。即以影像信号分部最相似的区域为同名区域,同名区域的中心点为同名点。这也是自动化立体量测的基本原理。

同名点的确定是以匹配测度为基础的,因此定义匹配测度是影像匹配最首要的任务,基于不同的理论或不同的思想可以定义各种不同的匹配测度,因而形成了各种影像匹配方法及相应的实现算法。常见的基于像方灰度的影像匹配算法有相关函数法、协方差函数法、相关系数法、差平方和法、差绝对值和法、最小二乘法等,基于物方的影像匹配算法有铅垂线轨迹法(VLL,Vertical Line Locus),另外还有基于像方特征的跨接法影像匹配,金字塔多级影像匹配, SIFT等等。

 再补充一点影像配准和图像几何校正之间的关系又是什么的?

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:91031次
    • 积分:1590
    • 等级:
    • 排名:千里之外
    • 原创:48篇
    • 转载:127篇
    • 译文:0篇
    • 评论:4条
    最新评论