先验概率与后验概率、贝叶斯区别与联系

先验概率和后验概率

教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。

假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。

堵车的概率就是先验概率 。

那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。

如果我们已经出了门,然后遇到了堵车,那么我们想算一下堵车时由交通事故引起的概率有多大,

那这个就叫做后验概率 (也是条件概率,但是通常习惯这么说) 。也就是P(交通事故|堵车)。这是有果求因。

下面的定义摘自百度百科:

先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.

后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因".

那么这两个概念有什么用呢?

最大似然估计

我们来看一个例子。

有一天,有个病人到医院看病。他告诉医生说自己头痛,然后医生根据自己的经验判断出他是感冒了,然后给他开了些药回去吃。

有人肯定要问了,这个例子看起来跟我们要讲的最大似然估计有啥关系啊。

关系可大了,事实上医生在不知不觉中就用到了最大似然估计(虽然有点牵强,但大家就勉为其难地接受吧^_^)。

怎么说呢?

大家知道,头痛的原因有很多种啊,比如感冒,中风,脑溢血...(脑残>_<这个我可不知道会不会头痛,还有那些看到难题就头痛的病人也不在讨论范围啊!)。

那么医生凭什么说那个病人就是感冒呢?哦,医生说这是我从医多年的经验啊。

咱们从概率的角度来研究一下这个问题。

其实医生的大脑是这么工作的,

他计算了一下

P(感冒|头痛)(头痛由感冒引起的概率,下面类似)

P(中风|头痛)

P(脑溢血|头痛)

...

然后这个计算机大脑发现,P(感冒|头痛)是最大的,因此就认为呢,病人是感冒了。看到了吗?这个就叫最大似然估计(Maximum likelihood estimation,MLE) 。

咱们再思考一下,P(感冒|头痛),P(中风|头痛),P(脑溢血|头痛)是先验概率还是后验概率呢?

没错,就是后验概率。看到了吧,后验概率可以用来看病(只要你算得出来,呵呵)。

事实上,后验概率起了这样一个用途,根据一些发生的事实(通常是坏的结果),分析结果产生的最可能的原因,然后才能有针对性地去解决问题。

那么先验概率有啥用呢?

我们来思考一下,P(脑残|头痛)是怎么算的。

P(脑残|头痛)=头痛的人中脑残的人数/头痛的人数

头痛的样本倒好找,但是头痛的人中脑残的人数就不好调查了吧。如果你去问一个头痛的人你是不是脑残了,我估计那人会把你拍飞吧。

接下来先验概率就派上用场了。

根据贝叶斯公式 ,

P(B|A)=P(A|B)P(B)/P(A)

我们可以知道

P(脑残|头痛)=P(头痛|脑残)P(脑残)/P(头痛)

注意,(头痛|脑残)是先验概率,那么利用贝叶斯公式我们就可以利用先验概率把后验概率算出来了。

P(头痛|脑残)=脑残的人中头痛的人数/脑残的人数

这样只需要我们去问脑残的人你头痛吗,明显很安全了。

(你说脑残的人数怎么来的啊,那我们就假设我们手上有一份传说中的脑残名单吧。那份同学不要吵,我没说你在名单上啊。

再说调查脑残人数的话咱就没必要抓着一个头痛的人问了。起码问一个心情好的人是否脑残比问一个头痛的人安全得多)

我承认上面的例子很牵强,不过主要是为了表达一个意思。后验概率在实际中一般是很难直接计算出来的,相反先验概率就容易多了。因此一般会利用先验概率来计算后验概率。

似然函数与最大似然估计

下面给出似然函数跟最大似然估计的定义。

我们假设f是一个概率密度函数,那么

x/mapsto f(x/mid/theta), /!

是一个条件概率密度函数(θ 是固定的)

而反过来,

/theta/mapsto f(x/mid/theta), /!

叫做似然函数 (x是固定的)。

一般把似然函数写成

L(/theta /mid x)=f(x/mid/theta), /!

θ是因变量。

最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。

意思就是呢,当后验概率最大时θ的大小。也就是说要求最有可能的原因。

由于对数函数不会改变大小关系,有时候会将似然函数求一下对数,方便计算。

例子:

我们假设有三种硬币,他们扔到正面的概率分别是1/3,1/2,2/3。我们手上有一个硬币,但是我们并不知道这是哪一种。因此我们做了一下实验,我们扔了80次,有49次正面,31次背面。那么这个硬币最可能是哪种呢?我们动手来算一下。这里θ的定义域是{1/3,1/2,2/3}

/begin{align}/Pr(/mathrm{H} = 49 /mid p=1/3) & = /binom{80}{49}(1/3)^{49}(1-1/3)^{31} /approx 0.000 //[6pt]/Pr(/mathrm{H} = 49 /mid p=1/2) & = /binom{80}{49}(1/2)^{49}(1-1/2)^{31} /approx 0.012 //[6pt]/Pr(/mathrm{H} = 49 /mid p=2/3) & = /binom{80}{49}(2/3)^{49}(1-2/3)^{31} /approx 0.054./end{align}

当p=2/3时,似然函数的值最大,因此呢,这个硬币很可能是2/3。

  • 71
    点赞
  • 84
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
先验分布(Prior Distribution)是指在考虑任何观测数据之前,对于未知参数的分布假设。它是基于先前的经验、理论或其他信息,对于未知参数的概率分布进行的猜测。在统计推断中,先验分布通常是由专家知识、历史数据或相关研究提供的。 后验分布(Posterior Distribution)是指在考虑观测数据后,对于未知参数的分布假设。它是在先验分布的基础上,根据观测数据的结果进行更新后得到的分布。在贝叶斯统计学中,后验分布是由先验分布和似然函数的乘积归一化得到的。 以下是一个简单的示例,演示如何使用Python实现先验分布和后验分布: 假设我们想要推断一枚硬币正面朝上的概率$p$。我们假设先验分布为伯努利分布,即$p \sim Ber(\theta)$,其中$\theta$是未知参数,我们假设$\theta = 0.5$。我们进行了$n$次试验,其中有$k$次正面朝上。我们可以使用Python来计算后验分布。 首先,我们需要导入所需的库: ```python import numpy as np import matplotlib.pyplot as plt ``` 然后,我们定义先验分布: ```python theta = 0.5 # 先验分布的参数 prior = np.array([theta, 1-theta]) # 先验分布 ``` 接下来,我们定义似然函数: ```python def likelihood(k, n, theta): return theta**k * (1-theta)**(n-k) ``` 然后,我们可以计算后验分布: ```python n = 10 # 试验次数 k = 7 # 正面朝上的次数 posterior = prior * likelihood(k, n, theta) # 后验分布 posterior = posterior / np.sum(posterior) # 归一化 ``` 最后,我们可以绘制先验分布和后验分布的图像: ```python x = np.array([0, 1]) plt.bar(x, prior, alpha=0.5, label='Prior') plt.bar(x, posterior, alpha=0.5, label='Posterior') plt.legend() plt.show() ``` 运行代码后,我们可以得到以下图像,显示出先验分布和后验分布的差异。 ![先验分布和后验分布的图像](https://i.loli.net/2021/08/12/7j1UmHJi5OeZSvR.png)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值