约瑟夫问题的数学方法

原创 2011年03月20日 22:57:00

N个人围成一圈,顺序排号,从从第一个人开始报数,从1到3,凡报道3的退出圈子,问最后留下的第几号的那位?


/*约瑟夫问题的数学方法

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
k-1 --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:*/

#include <stdio.h>
main()
{
int n, m, i, s=0;
printf("N="); scanf("%d", &n);
printf("M="); scanf("%d", &m);
for(i=2; i<=n; i++) s=(s+m)%i;
printf("The winner is %d/n", s+1);
}

/*这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。*/

相关文章推荐

Josephus(约瑟夫)环问题的数学方法,使用递推公式。

Josephus(约瑟夫)环问题的数学方法,使用递推公式。

百练-2746-OpenJudge(约瑟夫问题分析二,数学方法)

#include #include int main() {    int n, m, i,s;    while(scanf("%d%d",&n,&m)&&(n||m))    {  ...

UVa 3882 And Then There Was One(stl+有技巧的模拟||数学方法+约瑟夫问题)

Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbered 1, …, n ...

约瑟夫环的数学方法

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们...

约瑟夫问题的数学解决方法

  • 2013年03月27日 21:11
  • 363B
  • 下载

用数学方法解约瑟夫环

问题:将编号为0~(N–1)这N个人进行圆形排列,按顺时针从0开始报数,报到M–1的人退出圆形队列,剩下的人继续从0开始报数,不断重复。求最后出列者最初在圆形队列中的编号。下面首先列出0~(N–1)这...

约瑟夫环问题数学优化方法

经典数学优化问题

约瑟夫环问题的数学求解

原文   http://www.cnblogs.com/jjscm/p/4463555.html 问题:有n个人站成环 从1开始报数,报k的人去死,之后下一个人报1,问当你是第几个的时候可...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:约瑟夫问题的数学方法
举报原因:
原因补充:

(最多只允许输入30个字)