关闭

线性规划求解路径问题

697人阅读 评论(0) 收藏 举报
分类:

问题描述

给定一个带权重的有向图G=(V,E),V为顶点集,E为有向边集,每一条有向边均有一个权重。对于给定的顶点s、t,以及V的子集V’,寻找从s到t的不成环有向路径P,使得P经过V’中所有的顶点(对经过V’中节点的顺序不做要求)。

整数规划求解思路

记边的变量为ei 对应权重为ci , 点记为vi, 其出边记为voji, 其入边记为viji, 必经点记为dji
可以建立如下规划方程

minciei

ei01

必经点出边和为1
jdoji=1

所有点出边和等于入边和
jviji=jvoji

普通点 出边和小于等于1
jviji1

起点 出边和为1, 入边和为0
jvijs=0
jvojs=1

终点 入边和为1, 出边和为0
jvijs=1
jvojs=0

这样使用支持 整数规划混合整数规划的求解器的求解器即可以求解。这样,就将路径问题转化为了线性规划问题。

防止环路

如下的拓扑中,边上的红色数字表示边的id, 绿色为对应的权重。
起点为0, 终点为1, 必经点为2,3。
这里写图片描述
可行路径为
0 -> 2 -> 3 -> 1, 权重为4
0 -> 3 -> 2 -> 1, 权重为5

但如果使用上面的模型求解,就会求出如下的结果
这里写图片描述
这样也符合以上的模型,但很明显,并不是起点到终点的有效路径。

必经点之间出现了环路。但在使用模型求解之前,是无法知道哪些边会组成环路的。
所以,最简单的思路就是,求解一次,检测是否出现了环路。如果有环路,就对组成环路的边加上限制。然后重新计算。但这样的效率明显不高。
这里介绍另一种防止环路的方法。
对所有边的起点和终点,添加如下约束方程:

eiseit+nein1

其中 eis eit分别表示边ei的起点和终点。
如果部分边组成了环路,则环路部分的不等式相加,左侧的起点和终点恰好全部约去,就会出现nn1的矛盾情况。

通过添加这样的方程,即可以防止环路。

求解

用于求解线性规划问题的求解器有很多。我们使用的是lp_solve。之前没有接触过这个领域,使用之后,发现很方便。
建立模型,将模型表示为求解器的输入格式,直接输出结果。

写在后面的一些话

使用线性规划问题,求解路径问题,不同于搜索的方法。自己接触之后,感觉思路很新颖,很神奇,仿佛打开了另一个世界。
而建立模型,使用求解器求解。自己感觉是不是所谓的函数式编程。
求解器求解之前,对应的结果其实已经被模型确定了。求解过程只是找出这个解而已。
如果模型没有准确的描述问题,那得到的结果必然不正确。
函数式编程,还是得学习一个。

2
0
查看评论

数值优化(Numerical Optimization)学习系列-线性规划(Linear Programming)

概述 线性规划问题是指目标和约束函数都是线性的最简单的约束最优化问题,也是在实际中最长使用的模型之一。其求解算法也是相对成熟,各个代数软件中都会有求解该问题的工具,本节主要介绍: 1. 线性规划的基本形式已经对偶 2. 线性规划两类求解算法:单纯形和内点法 3. 总结...
  • fangqingan_java
  • fangqingan_java
  • 2015-12-27 18:54
  • 1704

R语言-最优化_整数规划、线性规划求解(Rsymphony)

Rsymphony包简介Rsymphony,混合整数线性规划SYMPHONY 求解器,其中主函数有: Rsymphony_solve_LP(obj, mat, dir, rhs, bounds = NULL, types = NULL, max = FALSE...
  • qq_27755195
  • qq_27755195
  • 2016-12-27 14:23
  • 4672

算法导论之线性规划

线性规划,充斥着运筹学,在图的单源最短路径求解差分约束系统就是用到线性规划。怎么样问题可以建模为线性规划来解决呢?在给定的有限的资源和竞争约束情况下,取得最大化或最小化目标的问题。导论中给出政治竞选问题、航空航线调度问题、钻井采油问题。最大化或最小化目标是函数的因变量,自变量就是资源的约束因素,其函...
  • fjssharpsword
  • fjssharpsword
  • 2016-11-17 09:21
  • 3637

线性规划求解器 lp_solve

  • 2010-09-11 11:22
  • 3.62MB
  • 下载

线性规划

原文地址:http://blog.sina.com.cn/s/blog_61e8042b0100eepi.html 在数学中,线性规划 (Linear Programming,简称LP) 问题是目标函数和约束条件都是线性的最优化问题。 线性规划是最优化问题中的重要领...
  • xiaogugood
  • xiaogugood
  • 2014-01-14 17:12
  • 14605

线性规划C++程序

  • 2013-04-22 21:55
  • 44KB
  • 下载

深入浅出数据分析:最优化-用Excel求解一个线性规划问题

《深入浅出数据分析》最优化
  • nxcxl88
  • nxcxl88
  • 2016-10-17 22:09
  • 1572

利用Matlab求解线性规划问题

线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解: % min fx % s.t .(约束条件): Ax % (等式约束条件): Aeqx=beq % lb linprog函数的调用格式如下: x=linprog(f,A,b) x=l...
  • chl033
  • chl033
  • 2009-11-06 15:28
  • 10342

大规模线性规划计算软件

  • 2010-12-15 16:08
  • 418KB
  • 下载
    个人资料
    • 访问:7845次
    • 积分:557
    • 等级:
    • 排名:千里之外
    • 原创:49篇
    • 转载:5篇
    • 译文:0篇
    • 评论:9条