关闭

[置顶] 业余时间决定了你的人生

一百多年前,有道数学题难住了全世界的数学家:“2的67次方减去1,究竟是质数,还是合数?”这是一个数论的题目,虽然它的知名度远不如“哥德巴赫猜想”,但是,破解它的难度,一点儿也不逊于后者。数学家们做过种种尝试,都无功而退。出人意料的是,1903年10月,在美国纽约举行的世界数学年会上,一个叫科尔的数学家,面对满场等待他学术报告的听众,一言不发,径直走向黑板,写下了一个等式:2^67 - 1 = 19...
阅读(87) 评论(0)

SIFT--关键点定位

定位关键点位置 合适关键点 去除低响应的特征点 去除边缘响应 一些问题SIFT主要分四步,这篇主要解释第二步:关键点的定位。本文将从:定位关键点位置、选取合适的关键点、问题。三个部分来阐述。定位关键点位置上篇论文我们提到,通过DoG相邻层之间的比较来获取关键点。还是以图来看。即为了寻找尺度空间的极值点,每一个采样点都要和它所有的相邻点进行比较,看是否比它的图像域和尺度域的相邻点大或者小。如图,中间的...
阅读(2) 评论(0)

VMware提示 已将该虚拟机配置为使用 64 位客户机操作系统。但是,无法执行 64 位操作。

VMware12提示 已将该虚拟机配置为使用 64 位客户机操作系统。但是,无法执行 64 位操作。 此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态解决办法: 下载LeoMoon CPU-V 检查一下CPU VT-x状态是否启用 地址:http://download.csdn.net/detail/taoshujian/9770327 如果未启用 VT-x启用状态这里会有一...
阅读(26) 评论(0)

SIFT--尺度空间、高斯金字塔

尺度空间 高斯金字塔 高斯模糊 下采样 高斯金字塔的构造过程 差分高斯金字塔构造过程SIFT成名已久,但理解起来还是很难的,一在原作者Lowe的论文对细节提到的非常少,二在虽然网上有许多相应博文,但这些博文云里雾里,非常头疼,在查看了许多资料了,下面贴出我自己的一些理解,希望有所帮助。Lowe把SIFT分为四个阶段:构建尺度空间、关键点的定位、方向分配、特征描述符。下面分别从这四个阶段来阐述。尺度空...
阅读(17) 评论(0)

高斯模糊

图像处理的基本知识和学习SIFT的先验知识,总结一下温故而知新,学习的知识整理出来时常翻一下还是好的。下面将从高斯模糊的定义和应用上来说明。高斯模糊定义 高斯模糊的应用高斯模糊定义高斯模糊其实是一个低通滤波器,它的核心在于使用高斯函数作为模糊模板与输入图像做卷积运算,去除图像的高频分量,达到模糊图像的目的(其实就是滤波)。经过高斯模糊处理的图片视觉效果类似于通过透过半透明的屏幕去查看,高斯模糊在图像...
阅读(24) 评论(0)

卷积的理解

卷积的定义 卷积的计算 卷积的应用上学期上过信号处理这门课,整理过一些卷积的资料,放下了,最近在看SIFT,又重新过了一遍。 卷积理解起来还是十分抽象的,看了很多资料才算一知半解吧,以下贴出。只要接触过卷积的人一定会知道“反褶、平移、积分”这句话,大部分人解释卷积也是靠这句话,但这句话非常空洞,卷积又是一个十分抽象的东西,我也被此困扰好久,别人要是问对卷积的理解,也就只能回答“反褶–平移–积分”,...
阅读(28) 评论(0)

机器学习第十一周--照片OCR

ML Pipeline 照片OCR ML pipeline 滑动窗 人工合成数据 创造新数据 通过已有的样本创造新的样本 上限分析ML PipelineOCR指光学字符识别,作者这里介绍照片OCR技术的目的主要有三个: 1、展示一个复杂的机器学习系统是如何被组合起来的。 2、介绍机器学习流水线(ML pipeline)的有关概念以及决定下一步如何分配资源。 3、通过介绍照片OCR问题...
阅读(79) 评论(0)

机器学习第十周(二)--在线学习、Map reduce

在线学习 运输服务 搜索 Map reduce Map-reduce原理 使用Map-reduce的条件 Map-reduce处理逻辑回归在线学习在拥有连续一波数据或连续的数据流涌进来,而我们又需要一个算法来从中学习的时候来模型化问题时,我们就需要用到在线学习机制。 如果你有一个由连续的用户流引发的连续的数据流,用户流进入你的网站,你能做的是使用一个在线学习机制,从数据流中学习用户的偏好,然后使用...
阅读(16) 评论(0)

机器学习第十周(一)--随机梯度下降

大数据 随机梯度下降 小批量梯度下降 随机梯度下降的收敛大数据机器学习中约定俗成有这么一句话:更多的数据决定算法的好坏。 但是数据变多时,计算量也就相应增多。当我们的训练集大小为一亿时,训练集就非常大了。当我们训练集非常大时,我们会随机选取几千条数据来验证我们的算法是否合适。这里随机取1000个数据。画出学习曲线,左边处于高方差状态,我们需要增加训练集。右边处于高偏差状态,增加特征或是一个不错的方...
阅读(17) 评论(0)

conv2、filter2、imfilter比较

http://www.ilovematlab.cn/thread-293710-1-1.html ————————————-conv2函数—————————————- 1、用法 C=conv2(A,B,shape);        %卷积滤波 复制代码 A:输入图像,B:卷积核        假设输入图像A大小为ma x na,卷积核B大小为mb x nb,则        当shape=fu...
阅读(33) 评论(0)

Github的初用

1、首先在Ubuntu下安装gitsudo apt-get install git当安装不成功时,可以尝试更新一下sudo -apt-get update一开始我也出现过安装不成功的情况,更新后安装成功。git --version 检查是否安装成功2、注册github账户,新建一个仓库。3、在本地创建 ssh-key$ ssh-keygen -t rsa -C "your_email@youre...
阅读(48) 评论(0)

Ubuntu中Vim的安装

Ubuntu中是默认没有安装Vim的,只有Vim的精简版Vim-tiny和vi。1、查看安装的vivi +"Tab" 查看2、安装vimsudo apt-get install vim-gtk3、编辑vimrcsudo vim /etc/vim/vimrc其中安装vim过程中出现的vimtutor是vim的内置学习文档。是vim的基础教程。4、修改配置保证语法高亮5、作其他配置set nu...
阅读(75) 评论(0)

机器学习第九周(四)--推荐系统

预测电影评分 基于内容的推荐 构造特征向量 参数向量theta的计算 梯度下降 协同过滤 特征向量 矛盾 协同过滤的优化 协同过滤的优化 协同过滤过程 低秩矩阵分解 协同过滤的向量化实现 找相关电影 均值归一化 均值归一化的引入 均值归一化预测电影评分推荐系统的引入主要有俩个原因: 1、推荐系统是机器学习中一个很重要的应用,一些大的商业公司会利用推荐系统来提高商业效益,这是很重要的。 2、...
阅读(261) 评论(0)

解决Python下安装pip失败问题

pip安装失败,在stark overflow上找到一个解决办法 sudo apt-get install python-setuptools sudo easy_install pip sudo apt-get update which pip //to check pip install or not pip install request...
阅读(80) 评论(0)

Ubuntu终端光标形状切换

用ubuntu时经常会不小心按到什么组合键造成一些差别,例如光标键: 默认情况都是单细线突然有时候变成这样的粗块体: 在Windows情况下这种一般都是误按了insert键造成,只要重复按下便可恢复 而在Linux下我们需要去改变当前应用的首选项或设置之类的去重新恢复(目前还未找到快捷键之类的方法)。这就得提到ubuntu一个很隐藏的地方了,打开窗口时当前的默认菜单栏是隐藏的,于是很久都没找到...
阅读(39) 评论(0)

Ubuntu下安装python3.5

ubuntu14.04系统会自带python2.7,请不要卸载它。不同版本的python可以共存在一个系统上。 卸载之后,桌面系统会被影响。(1)sudo add-apt-repository ppa:fkrull/deadsnakes (2)sudo apt-get update (3)sudo apt-get install python3.5 (4)sudo cp /usr/bin/pytho...
阅读(61) 评论(0)
93条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:7760次
    • 积分:696
    • 等级:
    • 排名:千里之外
    • 原创:61篇
    • 转载:32篇
    • 译文:0篇
    • 评论:2条
    博客专栏
    最新评论