关于HDU 1713 相遇周期

原创 2015年01月24日 11:09:50
                


http://acm.hdu.edu.cn/game/entry/problem/show.php?chapterid=2&sectionid=1&problemid=3

 提前说明:正确代码下的测试数据:


经过多次测试与查找相关资料得:
题中给出的为周期,单位错了,应为(天/圈),当T1=a/b=5/1时,v1=(1圈/5天),即为1/5(圈每天)。T2=c/d=10/1时,v2=1/10,速度差为v1-v2=1/10( 圈/天),v1快,v2慢,把v2看为静止,v1以1/10 (圈/天)的速度跑圆,在10天后第一次相遇。。。
相遇周期计算公式推导:卫星的轨道周长都为1,假设2,行星与B卫星不动,则A与B的相对速度为(1/Ta-1/Tb),所以A与B的相遇时间间隔是1/(1/Ta-1/Tb);
经过计算,本题实际上求a/b与c/d这两个分数的最小公倍数(关于为什么是最小公倍数,我也正在计算,明白以后会上传。),有一下两种思路
一:
思路: 对于两个最简的分数 a / b, c / d 把他们两个的最小公倍数x / y 也设为一个分数形式,那么这个 x 一定能够整除 a , c, y 一定能够被 b , d整除。那么要求得最小公倍数,那么肯定是分子尽量小,即 a , c 的最小公倍数, 分母尽量大, 即 b , d 的最大公约数。
(转载)正确代码:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

int gcd( int x, int y )
{
    if( y == 0 )
        return x;
    else
        return gcd( y, x % y );    
}

int lcm( int x, int y )
{
    return x / gcd( x, y ) * y;    
}

int main()
{
    int T;
    scanf( "%d", &T );
    while( T-- )
    {
        int a, b, c, d, rx, ry;
        scanf( "%d/%d", &a, &b );
        scanf( "%d/%d", &c, &d );
        int t = gcd( a, b );
        a /= t, b /= t;
        t = gcd( c, d ); 
        c /= t, d /= t; 
        if( gcd( b, d ) == 1 )
        {
            printf( "%d\n", lcm( a, c ) );
        }
        else
        {
            printf( "%d/%d\n", lcm( a, c ), gcd( b, d ) );
        }
    }
    return 0;
}
二:
思路:题目分析:题目输入c1/t1 c2/t2,,转换成:c1*t2/(t1*t2),  c2*t1/( t1*t2 ); 这时候我们只需要求出分子的最小公倍数k,然后k/( t1*t2 )就是题目求的周期
(转载)代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
__int64 gcd(__int64 a,__int64 b){
    __int64 c;
    if(a<b){
        c=a;    a=b;
        b=c;
    }
    while(b){
        c=b;
        b=a%b;
        a=c;
    }
    return a;
}
__int64 min_times(__int64 x1,__int64 x2){
    __int64 c=gcd(x1,x2);
    return x1*x2/c;
}
int main(){
    __int64 cas,c1,c2,t1;
    __int64 t2,p,k,m,n,h;
    cin>>cas;
    while(cas--){
        scanf("%I64d/%I64d",&c1,&t1);
                 //在这里提醒一下,用long long型的过不了!
                 //因为这个WA的好多次!
        scanf("%I64d/%I64dd",&c2,&t2);
        k=t1*t2;
        m=t2*c1;
        n=t1*c2;
        p=min_times(m,n);
        h=gcd(p,k);
        if(h==k){
            printf("%I64d\n",p/h);
        }
        else{
            printf("%I64d/%I64d\n",p/h,k/h);
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

hdu1713-相遇周期

Problem Description 2007年3月26日,在中俄两国元首的见证下,中国国家航天局局长孙来燕与俄罗斯联邦航天局局长别尔米诺夫共同签署了《中国国家航天局和俄罗斯联邦航天局关于联合探测...
  • xilihong816
  • xilihong816
  • 2015年09月26日 07:54
  • 481

HDOJ1713(相遇周期)(有点坑)

HDOJ1713(相遇周期)(有点坑) 相遇周期 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja...
  • hpulw
  • hpulw
  • 2016年01月15日 21:23
  • 449

关于HDU 1713 相遇周期

对hdu1713相遇周期的理解。。。。
  • sholck222
  • sholck222
  • 2015年01月24日 11:09
  • 1137

杭电ACM1713——相遇周期

#include #include using namespace std; __int64 gbs(__int64 x, __int64 y) { __int64 tx = x, ty = ...
  • qq_25425023
  • qq_25425023
  • 2015年11月15日 17:09
  • 539

HDU1713 最小周期

题目描述 给定两个分数,求其最小公倍数。用最简分数表示(整数就输出整数)。 输入 2 26501/6335 18468/42 29359/11479 15725/19170 输...
  • Area_52
  • Area_52
  • 2014年11月27日 15:02
  • 557

hdu1713

百度: 比如一个卫星的周期为3圈每天,另一个为4圈每天,相遇周期就为12圈每天。 此题就是求两个分数的最小公倍数; 设输入a1/b1,a2/b2; 设最小公倍数为a3/b3; 通过运算可以得出a3需要...
  • xxiaobaib
  • xxiaobaib
  • 2016年04月28日 22:06
  • 235

HDU 1713 -相遇周期

相遇周期 Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su...
  • Luwhere
  • Luwhere
  • 2015年07月26日 22:29
  • 821

HDU2.1.3 相遇周期

为什么感觉是题目出错了··· 我刚开始的做法是根据所给数据求出两个卫星的各自周期T1和T2 然后再用T1*T2/abs(T2-T1)即可 但是这样求出来和样例拍不上 上网查了一下,(虽然我并不...
  • SteelBasalt
  • SteelBasalt
  • 2015年08月07日 21:15
  • 675

HDU - 1713 相遇周期

怎么说呢?感觉像坑爹的一题,一开始以为求周期(时间),但怎么算都与答案相去甚远,蓦然回首,原来所求的周期是这样子的26501/6335(我们的问题是已知两颗卫星的运行周期,求它们的相遇周期(已知:26...
  • gusongji
  • gusongji
  • 2013年04月23日 22:04
  • 390

HDU 1713 相遇周期

题目大意:两飞船绕同一星球沿同一方向飞,知道它们各自的周期(转多少圈要多少天),求相遇周期。 题目分析:已知两飞船周期,求相遇周期,即为求两数的最小公倍数。输入的两个分数是飞船速度,要变成周期需倒过...
  • u012400327
  • u012400327
  • 2014年02月27日 15:15
  • 357
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于HDU 1713 相遇周期
举报原因:
原因补充:

(最多只允许输入30个字)