HDOJ 1875 畅通工程再续 最小生成树 kruskal && prim

原创 2015年08月11日 14:32:21

畅通工程再续

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19449    Accepted Submission(s): 6092


Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
 

Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
 

Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
 

Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
 

Sample Output
1414.2 oh!
注-此题为:HDOJ 1875 畅通工程再续

说明:      克鲁斯卡尔(思想),运用并查集知识

            先将岛屿编号,将两个岛屿相连时要判断是否符合条件(d>=10&&d<=1000),只将符合条件的存入结构体

错误原因:先判断是否符合条件,不符合的,直接输出oh!,结果 WA;

例如:岛屿    1,2,3

                1 和 2 相距 5

                1 和 3 相距 20

                2 和 3 相距 30

这个是满足题意的;       1 和  2 ,  2  和  3    

如果先判断:1 和 2 相距 5    直接输出oh!,结果 WA;

错误代码:(这一点错误好几次)

   for(i=0;i<n-1;++i)
        {
            for(j=i+1;j<n;++j)
            {
                s[k].u=i+1,s[k].v=j+1;  //小岛编号
                 
                d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
                s[k].w=d;
                k++;
            }
        }
        sort(s,s+k,cmp);
        
        if(s[0].w<10||s[k-1].w>1000)
        {
            printf("oh!\n");
            continue;
        }
上面的例子:s[0].w = 5  直接输出oh!,结果 WA;



已AC代码:(kruscal)

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;

int n;
int per[125];    // 并查集 
double x[125],y[125];//小岛坐标 

struct node{
	int u,v;
	double w;    //w为距离 
}s[10010];

bool cmp(node a,node b)
{
	return a.w<b.w;
}

void itoa()  //初始化 
{
	for(int i=0;i<=n;++i)
		per[i]=i;
}

int find(int x)   // 查找根节点 
{
	if(x==per[x])
		return x;
	return find(per[x]);
}

bool join(int a,int b)   //合并根节点,并判断是否成环 
{
	int fa=find(a);
	int fb=find(b);
	if(fb!=fa)
	{
		per[fa]=fb;
		return true;
	}
	return false;
}

int main()
{
	int T,i,j;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		
		for(i=0;i<n;++i)
			scanf("%lf%lfd",&x[i],&y[i]);
			
		int k=0;  // 两两相连 一共可建 k 个桥 
		double d; //两岛间距 
		
		for(i=0;i<n-1;++i)
		{
			for(j=i+1;j<n;++j)
			{
				d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
				if(d>=10&&d<=1000)
				{
					s[k].u=i; //小岛编号
					s[k].v=j; 
					s[k].w=d;
					k++;
				}
			}
		}
		
		sort(s,s+k,cmp);  //按距离从小到大排序 

		itoa();
		
		int flag=0;
		double sum=0;
		
		for(i=0;i<k;++i)
		{
			if(join(s[i].u,s[i].v))  //判断是否成环 
			{
				sum+=s[i].w;
				flag++;   //已连的路数 
			}
		}
		
		if(flag==n-1)   //m个点 m-1 条边,为一棵树 
			printf("%.1lf\n",sum*100);
		else
			printf("oh!\n");	
	}
	return 0;
}


prim  把不符合条件的两个岛屿间的权值赋为无穷大,这样,就不会再取这两个岛屿

已AC代码:(prim

#include<cstdio>
#include<cstring>
#include<cmath>
#define INF 0xfffffff

double map[125][125],low[125],sum;
int x[125],y[125];   //map二维数组存图,low记录每2个点间最小权值,vis标记某点是否已访问
int vis[125];
int n;

double dlen(int i,int j)
{
	return sqrt( 1.0*((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])) );
}

void prim()
{
	double min,sum=0;
	int i,j,pos;   
	memset(vis,0,sizeof(vis));
	vis[1]=1;	pos=1;   	//从某点开始,分别标记vis和记录该点pos
	for(i=1;i<=n;++i)   //第一次给low数组赋值 map的第一行 
		low[i]=map[pos][i];

	for(i=1;i<n;++i)   //再运行n-1次,一次找一个最小 
	{
		min=INF;
		for(j=1;j<=n;++j)
		{
			if(vis[j]==0&&low[j]<min)
			{
				min=low[j];
				pos=j;
			}
		}
		
		if(min==INF)  //不能连通  找不到符合条件的 
		{
			printf("oh!\n");
			return ;
		}
		
		vis[pos]=1;    //标记该点已访问 
		sum+=min;   //最小权值累加
		for(j=1;j<=n;++j)    //更新权值low 把 map的 pos 行中比对应的 low 小的赋给low 
			if(vis[j]==0&&low[j]>map[pos][j])
				low[j]=map[pos][j];
	}
	
	printf("%.1lf\n",sum*100);
	return ;
}

int main()
{
	int T,i,j;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		for(i=1;i<=n;++i)
			scanf("%d%d",&x[i],&y[i]);
		memset(map,0,sizeof(map));
		for(i=1;i<=n;++i)
		{
			for(j=1;j<=n;++j)
			{
				map[i][j]=map[j][i]=dlen(i,j);
				if(map[i][j]<10||map[i][j]>1000)  //不符合条件 将权值设为无穷大,不会用再到
					map[i][j]=map[j][i]=INF;
			}
		}
		
		prim();
	}
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj2485 prim最小生成树

#include using namespace std; int dist[510][510] = { 0 },N=0; const int inf = 0x3f3f3f3f; int prim()...

最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)
  • yeruby
  • yeruby
  • 2014年08月16日 18:49
  • 66969

HDU1875 畅通工程再续(最小生成树,Prim,kruskal算法)

题目: 畅通工程再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot...

hdoj 1875 畅通工程再续 【最小生成树】【prim算法】

昨天看了一下prim算法,原来只是抱着试试看的态度看一下,没想到居然看懂了,多谢 Veegin大大的详细解释,写的太好了。ZAN!!! 链接 http://www.cnblogs.com/V...

HDU-1875 畅通工程再续-1162 - Eddy's picture(最小生成树,Kruskal 算法实现 )

最近在搞最小生成树,做了三题套模板的题目,现在
  • FXXKI
  • FXXKI
  • 2014年07月26日 22:58
  • 504

HDU 1875 畅通工程再续(最小生成树-Kruskal)

Description 相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问...
  • V5ZSQ
  • V5ZSQ
  • 2017年07月24日 20:17
  • 138

hdu1875 畅通工程再续 最小生成树(prim算法)

畅通工程再续

HDU Problem 1875 畅通工程再续 【最小生成树Prim】

畅通工程再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...

HDU-1875 畅通工程再续(最小生成树[Prim])

本题除了让自己判断两点之间是否存在边外,依旧是一道裸的最小生成树。只需要注意把两点间距离的平方当作权值以避免精度问题即可。...

hdu 1875 畅通工程再续 【最小生成树-prim】

畅通工程再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDOJ 1875 畅通工程再续 最小生成树 kruskal && prim
举报原因:
原因补充:

(最多只允许输入30个字)