uva 10453 - Make Palindrome (区间dp,记忆化搜索)

本文介绍了一种使用区间动态规划(DP)方法解决字符串转换为回文串的问题,通过最小字符添加来实现,包括记忆化搜索和递推区间DP两种实现方式。




本文出自   http://blog.csdn.net/shuangde800



题目链接:  点击打开链接


题目大意

给一个字符串,要求添加最少个字符,把它变成回文串,并输出。


思路

简单的区间dp,

f(i, j) 表示区间(i, j) 内的字符串添加的最少个数,变成回文串
那么, 如果str[i]==str[j], f(i, j) = f(i+1, j-1) + 1
f(i, j) = min{f(i+1, j), f(i, j-1)} + 1;
题目要输出方案,那么只要再开一个数组,根据状态转移递归输出即可


代码

记忆化搜索 + 递推的区间dp都有实现

/**==========================================
 *   This is a solution for ACM/ICPC problem
 *
 *   @source:uva-10453 Make Palindrome
 *   @type: 记忆化搜索, 区间dp
 *   @author: shuangde
 *   @blog: blog.csdn.net/shuangde800
 *   @email: zengshuangde@gmail.com
 *===========================================*/

#include
  
   
#include
   
    
#include
    
     
#include
     
      
#include
      
       
#include
       
         #include
        
          using namespace std; typedef long long int64; const int INF = 0x3f3f3f3f; const int MAXN = 1010; char str[MAXN]; int len; int f[MAXN][MAXN]; // 记忆化搜索版本, f数组初始化INF int dfs(int i, int j) { if (i>j || i==j) return f[i][j] = 0; if (f[i][j] != INF) return f[i][j]; int& ans = f[i][j]; if (str[i] == str[j]) ans = dfs(i+1, j-1); ans = min(ans, min(dfs(i+1, j), dfs(i, j-1))+1); return f[i][j]; } // 递推区间dp void dp() { memset(f, 0, sizeof(f)); for (int d = 2; d <= len; ++d) for (int l = 0; l+d-1 <= len; ++l) { int r = l + d - 1; int& ans = f[l][r] = INF; if(str[l] == str[r]) ans = f[l+1][r-1]; ans = min(ans, min(f[l+1][r], f[l][r-1])+1); } } void output(int i, int j) { if (i > j) return; if (i==j) { printf("%c", str[i]); return; } if (str[i] == str[j]) { printf("%c", str[i]); output(i+1, j-1); printf("%c", str[i]); } else if (f[i][j] == f[i+1][j] + 1) { printf("%c", str[i]); output(i+1, j); printf("%c", str[i]); } else { printf("%c", str[j]); output(i, j-1); printf("%c", str[j]); } } int main(){ while (gets(str)) { len = strlen(str); dp(); printf("%d ", f[0][len-1]); output(0, len-1); putchar('\n'); } return 0; } 
        
       
      
     
    
   
  






### 题目分析 CSES - 1755 Palindrome Reorder 问题通常是给定一个字符串,要求判断是否可以将该字符串的字符重新排列形成一个回文串,如果可以,则输出重新排列后的回文字符串;如果不可以,则输出 "NO SOLUTION"。 ### 解决方案思路 要形成一个回文串,对于字符串中的字符,最多只能有一个字符的出现次数为奇数,其余字符的出现次数都必须为偶数。可以按照以下步骤解决该问题: 1. 统计字符串中每个字符的出现次数。 2. 检查出现次数为奇数的字符的数量。如果数量大于 1,则无法形成回文串,输出 "NO SOLUTION"。 3. 如果可以形成回文串,构建回文串。先将出现次数为偶数的字符分成两部分,分别放在回文串的左右两侧,然后将出现次数为奇数的字符放在回文串的中间。 ### 代码实现(Python) ```python # 读取输入的字符串 s = input() # 统计每个字符的出现次数 char_count = {} for char in s: if char in char_count: char_count[char] += 1 else: char_count[char] = 1 # 检查出现次数为奇数的字符的数量 odd_count = 0 odd_char = '' for char, count in char_count.items(): if count % 2 != 0: odd_count += 1 odd_char = char # 如果出现次数为奇数的字符数量大于 1,则无法形成回文串 if odd_count > 1: print("NO SOLUTION") else: # 构建回文串 left_half = '' for char, count in char_count.items(): left_half += char * (count // 2) # 输出回文串 result = left_half + odd_char + left_half[::-1] print(result) ``` ### 复杂度分析 - **时间复杂度**:$O(n)$,其中 $n$ 是字符串的长度。主要时间开销在于统计字符出现次数和构建回文串。 - **空间复杂度**:$O(k)$,其中 $k$ 是字符集的大小。主要空间开销在于存储每个字符的出现次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值