使用Python Pandas处理亿级数据

转载 2015年03月23日 21:03:04

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:

  • 硬件环境
    • CPU:3.5 GHz Intel Core i7
    • 内存:32 GB HDDR 3 1600 MHz
    • 硬盘:3 TB Fusion Drive
  • 数据分析工具
    • Python:2.7.6
    • Pandas:0.15.0
    • IPython notebook:2.0.0

源数据如下表所示:


Table Size Desc
ServiceLogs 98,706,832 rows x 14 columns 8.77 GB 交易日志数据,每个交易会话可以有多条交易
ServiceCodes 286 rows × 8 columns 20 KB 交易分类的字典表

数据读取

启动IPython notebook,加载pylab环境:

ipython notebook --pylab=inline

Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。

?
1
2
3
4
5
6
importpandas as pd
reader =pd.read_csv('data/servicelogs', iterator=True)
try:
    df =reader.get_chunk(100000000)
exceptStopIteration:
    print"Iteration is stopped."


1百万条 1千万条 1亿条
ServiceLogs 1 s 17 s 263 s

使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。

?
1
2
3
4
5
6
7
8
9
10
11
loop =True
chunkSize =100000
chunks =[]
whileloop:
    try:
        chunk =reader.get_chunk(chunkSize)
        chunks.append(chunk)
    exceptStopIteration:
        loop =False
        print"Iteration is stopped."
df =pd.concat(chunks, ignore_index=True)

下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。

Chunk Size Read Time (s) Total Time (s) Performance
100,000 224.418173 261.358521
200,000 232.076794 256.674154
1,000,000 213.128481 234.934142 √ √
2,000,000 208.410618 230.006299 √ √ √
5,000,000 209.460829 230.939319 √ √ √
10,000,000 207.082081 228.135672 √ √ √ √
20,000,000 209.628596 230.775713 √ √ √
50,000,000 222.910643 242.405967
100,000,000 263.574246 263.574246

使用Python Pandas处理亿级数据

如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。

数据清洗

Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。

首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:

使用Python Pandas处理亿级数据

Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:

df.dropna(axis=1, how='all')

共移除了14列中的6列,时间也只消耗了85.9秒。

接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。

对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!

数据处理

使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

df['Name'] = df['Name'].astype(np.datetime64)

对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。

?
1
2
3
df.groupby(['NO','TIME','SVID']).count() # 分组
fullData =pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接
actions =fullData.pivot_table('SVID', columns='TYPE', aggfunc='count'# 透视表

根据透视表生成的交易/查询比例饼图:

使用Python Pandas处理亿级数据

将日志时间加入透视表并输出每天的交易/查询比例图:

?
1
2
total_actions =fullData.pivot_table('SVID', index='TIME', columns='TYPE', aggfunc='count')
total_actions.plot(subplots=False, figsize=(18,6), kind='area')

使用Python Pandas处理亿级数据

除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:

tranData = fullData[fullData['Type'] == 'Transaction']

该子表的大小为 [10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

pandas.read_csv——分块读取大文件

今天在读取一个超大csv文件的时候,遇到困难: 首先使用office打不开 然后在python中使用基本的pandas.read_csv打开文件时:MemoryError 最后...

利用pandas进行大文件计数处理

Pandas对一些大文件的读取和分析基本方法,使用multiprocessing进行多进程处理

Python数据分析笔记

第一章 NumPy基础:数组和矢量计算 1.Numerical Python是高性能科学计算和数据分析的基础包。它提供了一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组ndarray;用于...

python大规模数据处理技巧之一:数据常用操作

面对读取上G的数据,python不能像做简单代码验证那样随意,必须考虑到相应的代码的实现形式将对效率的影响。如下所示,对pandas对象的行计数实现方式不同,运行的效率差别非常大。虽然时间看起来都微不...

Python基础 —— 获取当前文件所在目录,遍历当前目录,获取指定后缀的文件

In [54]:ximport os, sys×…In [55]: # 获取当前目录os.getcwd()×Out[55]:'C:\\Users\\rHotD\\Documents\\GitHub\\...

pandas遍历文件夹提取单个文件中的部分列集合

import pandas as pd import numpy as np import osInputDir = r'D:\workfile\juanworkfile\R\P'rootdir = ...

python 数据处理学习pandas之DataFrame(三)

请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录的形势来写这篇文章.最如果后续工作定下来...

pandas小记:pandas数据结构

http://blog.csdn.net/pipisorry/article/details/18010307 pandas的数据结构:Series、DataFrame、索引对象 pandas基本功...

python dataframe astype 字段类型转换

使用astype实现dataframe字段类型转换# -*- coding: UTF-8 -*- import pandas as pd df = pd.DataFrame([{'col1':'a',...
  • chinacmt
  • chinacmt
  • 2016年08月17日 13:59
  • 28929

利用Python Pandas进行数据预处理-数据清洗

数据缺失、检测和过滤异常值、移除重复数据 数据缺失 数据缺失在大部分数据分析应用中都很常见,Pandas使用浮点值NaN表示浮点和非浮点数组中的缺失数据,他只是一个便于被检测出来的数据而已。from...
  • YEN_CSDN
  • YEN_CSDN
  • 2016年12月03日 17:54
  • 26223
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:使用Python Pandas处理亿级数据
举报原因:
原因补充:

(最多只允许输入30个字)