使用Python Pandas处理亿级数据

转载 2015年03月23日 21:03:04

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:

  • 硬件环境
    • CPU:3.5 GHz Intel Core i7
    • 内存:32 GB HDDR 3 1600 MHz
    • 硬盘:3 TB Fusion Drive
  • 数据分析工具
    • Python:2.7.6
    • Pandas:0.15.0
    • IPython notebook:2.0.0

源数据如下表所示:


Table Size Desc
ServiceLogs 98,706,832 rows x 14 columns 8.77 GB 交易日志数据,每个交易会话可以有多条交易
ServiceCodes 286 rows × 8 columns 20 KB 交易分类的字典表

数据读取

启动IPython notebook,加载pylab环境:

ipython notebook --pylab=inline

Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。

?
1
2
3
4
5
6
importpandas as pd
reader =pd.read_csv('data/servicelogs', iterator=True)
try:
    df =reader.get_chunk(100000000)
exceptStopIteration:
    print"Iteration is stopped."


1百万条 1千万条 1亿条
ServiceLogs 1 s 17 s 263 s

使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。

?
1
2
3
4
5
6
7
8
9
10
11
loop =True
chunkSize =100000
chunks =[]
whileloop:
    try:
        chunk =reader.get_chunk(chunkSize)
        chunks.append(chunk)
    exceptStopIteration:
        loop =False
        print"Iteration is stopped."
df =pd.concat(chunks, ignore_index=True)

下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。

Chunk Size Read Time (s) Total Time (s) Performance
100,000 224.418173 261.358521
200,000 232.076794 256.674154
1,000,000 213.128481 234.934142 √ √
2,000,000 208.410618 230.006299 √ √ √
5,000,000 209.460829 230.939319 √ √ √
10,000,000 207.082081 228.135672 √ √ √ √
20,000,000 209.628596 230.775713 √ √ √
50,000,000 222.910643 242.405967
100,000,000 263.574246 263.574246

使用Python Pandas处理亿级数据

如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。

数据清洗

Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。

首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:

使用Python Pandas处理亿级数据

Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:

df.dropna(axis=1, how='all')

共移除了14列中的6列,时间也只消耗了85.9秒。

接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。

对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!

数据处理

使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

df['Name'] = df['Name'].astype(np.datetime64)

对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。

?
1
2
3
df.groupby(['NO','TIME','SVID']).count() # 分组
fullData =pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接
actions =fullData.pivot_table('SVID', columns='TYPE', aggfunc='count'# 透视表

根据透视表生成的交易/查询比例饼图:

使用Python Pandas处理亿级数据

将日志时间加入透视表并输出每天的交易/查询比例图:

?
1
2
total_actions =fullData.pivot_table('SVID', index='TIME', columns='TYPE', aggfunc='count')
total_actions.plot(subplots=False, figsize=(18,6), kind='area')

使用Python Pandas处理亿级数据

除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:

tranData = fullData[fullData['Type'] == 'Transaction']

该子表的大小为 [10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

相关文章推荐

python dataframe astype 字段类型转换

使用astype实现dataframe字段类型转换# -*- coding: UTF-8 -*- import pandas as pd df = pd.DataFrame([{'col1':'a',...

pandas.DataFrame.describe

file:///C:/Users/Administrator/Desktop/pandas/html/generated/pandas.DataFrame.describe.html?highligh...

几个pandas数据处理中的常用操作

记几个常用的函数,具体用法去官网查啦 import的惯例: import pandas as pd from pandas import Series,DataFrame 显示一些数字特征: df.d...

《Data Mining》学习——关联规则挖掘的模式评估方法

关联规则 大部分关联规则挖掘最终得出的是支持度与置信度。但是“强”关联规则不一定是正确的,这是因为这件事务的支持度可能大于与某项事物的置信度。 从关联分析到相关分析 我们对关联规则进行扩充得到,支...

python选取特定列——pandas的iloc和loc以及icol使用(列切片及行切片)

df是一个dataframe,标签为A B C D 具体值如下: A B C D 0 ss 小红 8 1 aa 小明 d 4 f f...

[数据挖掘]关联规则学习笔记

关联规则 频繁项集的产生 规则产生 基于置信度的剪枝 频繁项集的紧凑表示 41 极大频繁项集 42 闭频繁项集 6 FP增长算法 61 FP树表示法关联规则 参考资料:《数据挖掘导论》人民邮电出...

pandas 学习笔记

读者只需浏览一下本文的目录结构,我相信就已经掌握了1到2成的 pandas 知识。本文的目的是建立一个大概的知识结构在数据挖掘python阅读源码时,断断续续查阅了些 pandas 资料,并在源码中大...

Python 读取csv的某列

站长用Python写了一个可以提取csv任一列的代码,欢迎使用。Github链接 csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格: ...

关联规则学习

主要的指标包括:支持度support,置信度confidence,提升度lift。对于一个二项规则例如“A→B”,支持度是指A与B同时出现的概率,即P(A B);置信度是B关于A的条件概率,即P(B ...

pandas contact 之后,一定要记得用reset_index去处理index,不然容易出现莫名的逻辑错误

# -*- coding: utf-8 -*- import pandas as pd import sys df1 = pd.DataFrame({ 'A': ['A0', 'A1', 'A2',...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)