数据挖掘方法比较

原创 2016年05月31日 17:35:35

一、可解释性和应用广泛性

1、决策树:简单直观,逻辑性强,易于理解和应用,广泛使用。

2、神经网络:可解释性差,远没有决策树和回归应用广泛。

3、Logistic回归:更为成熟、应用更为广泛,具有强大的活力和最广泛的业务应用基础。

二、缺失值和异常值敏感情况

1、决策树:对缺失值几乎不做处理即可应用,不易受到异常值影响。

2、神经网络:对缺失值敏感,需要对缺失值处理(赋值、替换或删除),对异常值和噪声不敏感。

3、Logistic回归:不能处理缺失值,需要对缺失值(赋值、替换或删除),对异常值敏感,应删除。

三、变量个数和质量的要求

1、决策树:本身就是挑选变量的过程。

2、神经网络:少而精。

3、Logistic回归:变量筛选(向前引入法、向后剔除法、逐步回归法)。

四、过拟合现象

相比于决策树和逻辑回归,神经网络可以挑选非线性关系,较好的拟合数据,也更容易过拟合。

五、模型诊断指标和措施

1、决策树:贪心算法。

2、神经网络,缺乏成熟的模型评判方案。

3、Logistic回归:丰富的指标判断(ROC、LIFT)。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据挖掘中的分类算法比较

随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长。对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持。为了满足这种需...
  • bob908
  • bob908
  • 2014-07-22 16:31
  • 1447

【学堂在线数据挖掘:理论方法笔记】第二天(3.18)

11::36-12:06 30 分钟

数据挖掘方法

量化策略方法分享之数据挖掘工具——决策树算法

阅读原文:http://club.jr.jd.com/quant/topic/841642 京东金融官方资讯QQ群:417082141 有什么想咨询的都可以来询问我们哦 如今,大数据(...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)