数据挖掘方法比较

原创 2016年05月31日 17:35:35

一、可解释性和应用广泛性

1、决策树:简单直观,逻辑性强,易于理解和应用,广泛使用。

2、神经网络:可解释性差,远没有决策树和回归应用广泛。

3、Logistic回归:更为成熟、应用更为广泛,具有强大的活力和最广泛的业务应用基础。

二、缺失值和异常值敏感情况

1、决策树:对缺失值几乎不做处理即可应用,不易受到异常值影响。

2、神经网络:对缺失值敏感,需要对缺失值处理(赋值、替换或删除),对异常值和噪声不敏感。

3、Logistic回归:不能处理缺失值,需要对缺失值(赋值、替换或删除),对异常值敏感,应删除。

三、变量个数和质量的要求

1、决策树:本身就是挑选变量的过程。

2、神经网络:少而精。

3、Logistic回归:变量筛选(向前引入法、向后剔除法、逐步回归法)。

四、过拟合现象

相比于决策树和逻辑回归,神经网络可以挑选非线性关系,较好的拟合数据,也更容易过拟合。

五、模型诊断指标和措施

1、决策树:贪心算法。

2、神经网络,缺乏成熟的模型评判方案。

3、Logistic回归:丰富的指标判断(ROC、LIFT)。

大数据挖掘:系统方法与实例分析

  • 2017年11月04日 08:06
  • 54.71MB
  • 下载

数据挖掘中的分类算法比较

随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长。对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持。为了满足这种需...
  • bob908
  • bob908
  • 2014年07月22日 16:31
  • 1743

数据挖掘方法

  • 2013年04月12日 09:35
  • 1KB
  • 下载

数据挖掘工具R软件与Weka的比较分析

作为数据挖掘常用的两个工具软件,R软件和weka软件各有千秋,本文对这两种数据挖掘软件进行了比较与分析。 R软件介绍     R是统计领域广泛使用的一款软件,是一个开放的统计分...

clementine数据挖掘方法及应用(资料)

  • 2014年11月12日 09:24
  • 1.92MB
  • 下载

数据挖掘_概念方法.

  • 2010年11月19日 17:40
  • 8.01MB
  • 下载

数据挖掘常用聚类算法性能比较

转载自:http://www.douban.com/note/275659919/ 1 BIRCH算法   BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据挖掘方法比较
举报原因:
原因补充:

(最多只允许输入30个字)