基于物品的协同过滤算法

原创 2016年08月30日 00:14:55

场景:猜你喜欢

数据量:大数据架构

检验:准确率、召回率、覆盖率、流行度

 步骤:

  • 构建物品的同现矩阵
  • 建立用户对物品的评分矩阵
  • 同现矩阵*评分结果=矩阵计算结果
选择结果列向量中最大的未评价的推荐

具体实现:Hadoop+Mahout(数据模型、相似度、近邻、推荐、评分)
测试数据集:
rating.csv
3列:用户ID,图书ID,评分数据
记录数:4000次评分
用户数:200个
图书数:10000个
评分:1-10

users.csv
3列:用户ID,用户性别,用户年龄
用户数:200个
用户性别:M,F
用户年龄:11-80岁


算法模型:
3种推荐算法 UserCF,ItemCF,SlopeOne
基于用户:
  • 相似度距离+最近邻+推荐(评分,无评分)
基于物品:
  • 相似度距离+推荐算法(评分,无评分)
评估:查准率+召回率(查全率)

系统架构:Mahout 单机+分布
开发环境:Win7 64 + Java + Maven3 + Eclipse + Mahout 0.8 + Hadoop1.2
结果:userEuclideanNoPref 性能最好

基于物品的协同过滤算法:理论说明,代码实现及应用

基于物品的协同过滤算法:理论说明,代码实现及应用标签: 爬虫 Python主要参考资料: 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.转载请注明出处:sss0.一些碎碎念从4月中...

基于物品的协同过滤算法

基于物品的协同过滤算法(ItemCF)是业界应用最多的算法,主要思想是利用用户之前有过的行为,给用户推荐和之前物品类似的物品。 基于物品的协同过滤算法主要分为两步: 1)计算物品之间的相似度。 ...

基于物品的协同过滤算法:理论说明,代码实现及应用

基于物品的协同过滤算法:理论说明,代码实现及应用标签: 爬虫 Python主要参考资料: 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.转载请注明出处:http://blog.cs...

推荐系统:基于用户和基于物品的协同过滤算法的比较

首先回顾一下,协同过滤算法主要有两种,一种是基于用户的协同过滤算法(UserCF),另一种是基于物品的协同过滤算法(ItemCF)。 基于用户的协同过滤算法主要有两步: 1)找到和目标用户...

用Hadoop流实现mapreduce版推荐系统基于物品的协同过滤算法

以个性化新闻推荐为例,整个过程分成两个mapreduce阶段,由于hadoop流不支持多个mapreduce过程的自动化,所以所有mapreduce过程命令必须人工一个一个的执行。 1、首先需要将原始...

基于物品的协同过滤算法和SlopeOne的python实现

基本概念        Slope One的基本概念很简单, 例子1, 用户X, Y和A都对Item1打了分. 同时用户X,Y还对Item2打了分, 用户A对Item2可能会打多少分呢? ...

使用mapreduce并行化基于物品的协同过滤算法

由于item-based CF算法能对新用户进行推荐,并且能对推荐做出合理的解释,因此它在商用中的应用是很普遍的。[35]主要的贡献则是将item-based CF算法使用map-reduce框架并行...

[推荐算法]ItemCF,基于物品的协同过滤算法

 [推荐算法]ItemCF,基于物品的协同过滤算法 标签: ItemCF基于用户的协同过滤算法 2015-03-09 15:11 4144人阅读 评论(1) 收藏 举...

[推荐算法]ItemCF,基于物品的协同过滤算法

ItemCF:ItemCollaborationFilter,基于物品的协同过滤 算法核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品。 比如,用户A之前买过《数据挖掘导...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于物品的协同过滤算法
举报原因:
原因补充:

(最多只允许输入30个字)