关闭

基于物品的协同过滤算法

97人阅读 评论(0) 收藏 举报
分类:

场景:猜你喜欢

数据量:大数据架构

检验:准确率、召回率、覆盖率、流行度

 步骤:

  • 构建物品的同现矩阵
  • 建立用户对物品的评分矩阵
  • 同现矩阵*评分结果=矩阵计算结果
选择结果列向量中最大的未评价的推荐

具体实现:Hadoop+Mahout(数据模型、相似度、近邻、推荐、评分)
测试数据集:
rating.csv
3列:用户ID,图书ID,评分数据
记录数:4000次评分
用户数:200个
图书数:10000个
评分:1-10

users.csv
3列:用户ID,用户性别,用户年龄
用户数:200个
用户性别:M,F
用户年龄:11-80岁


算法模型:
3种推荐算法 UserCF,ItemCF,SlopeOne
基于用户:
  • 相似度距离+最近邻+推荐(评分,无评分)
基于物品:
  • 相似度距离+推荐算法(评分,无评分)
评估:查准率+召回率(查全率)

系统架构:Mahout 单机+分布
开发环境:Win7 64 + Java + Maven3 + Eclipse + Mahout 0.8 + Hadoop1.2
结果:userEuclideanNoPref 性能最好

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:34048次
    • 积分:1569
    • 等级:
    • 排名:千里之外
    • 原创:129篇
    • 转载:1篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论