【1】机器学习实战 第二章 k近邻算法

原创 2016年08月31日 16:36:55

1.tile函数的用法

tile函数的用法  tile函数是numpy中用来重复数组的函数,比如tile(A,n),功能是将数组A重复n次,构成一个新的数组。其中n可以是一个数字或一个数组。

2.sum函数

sum(a, axis=None, dtype=None, out=None, keepdims=False)

axis决定数组相加的形式

Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

3.字典的get函数

dict.get(key, default=None)

Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值

参数

  • key -- 字典中要查找的键。
  • default -- 如果指定键的值不存在时,返回该默认值。

eg:

dict = {'Name': 'Zara', 'Age': 27}

print "Value : %s" %  dict.get('Age')
print "Value : %s" %  dict.get('Sex', "Never")

%Value : 27
%Value : Never
4.scatter函数作图

matplotlib.pyplot.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

x, y : array_like, shape (n, )

Input data 坐标向量

s : scalar or array_like, shape (n, ), optional, default: 20

size in points^2.标记大小

c : color or sequence of color, optional, default标记颜色

5.raw_input()与input()的区别

点击打开链接


代码注释:机器学习实战第2章 k-近邻算法

在学习的过程中发现书中很多代码并没有注释,这对新入门的同学是一个挑战,特此贴出我对代码做出的注释,仅供参考,欢迎指正。...
  • da_da007
  • da_da007
  • 2017年03月18日 17:21
  • 440

机器学习实战第二章,kNN

#coding=utf-8 from numpy import * from os import listdir import operator def createDataSet():   ...
  • li1367356
  • li1367356
  • 2017年04月29日 06:21
  • 378

机器学习实战第二章-k近邻算法

一,k近邻算法概述 k近邻算法是一种简单有效但并不高效的非线性分类方法。 优点:精度高,对异常值不敏感、无数据输入假设。 缺点:计算复杂度高、空间复杂度高。 使用数据范围:离散型和连续型。 ...
  • h2026966427
  • h2026966427
  • 2018年02月04日 11:33
  • 31

机器学习实战k近邻算法(kNN)应用之手写数字识别代码解读

一.背景简要说明 书中假设待识别的数字已经使用图形处理软件将其处理为32*32的黑白图像,并将图片转换为文本格式。如下图代表数字0: 每个数字的训练样本大概有200个,每个数字的测...
  • SCUT_Arucee
  • SCUT_Arucee
  • 2015年12月11日 11:33
  • 3926

机器学习实战第二章——KNN算法(源码解析)

机器学习实战第二章——KNN算法(源码解析)
  • Quincuntial
  • Quincuntial
  • 2016年01月06日 20:14
  • 2235

机器学习实战笔记(Python实现)-02-k近邻算法(kNN)

机器学习实战笔记(Python实现)-02-k近邻算法(kNN) -- 下面来看一下书上对这个算法的原理介绍:存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新...
  • niuwei22007
  • niuwei22007
  • 2015年11月07日 17:27
  • 7308

机器学习实战笔记(第二章:k近邻算法)

k近邻算法(kNN)         本博客来源于CSDN:http://blog.csdn.net/niuwei22007/article/details/49703719       ...
  • wl_ss
  • wl_ss
  • 2017年10月13日 14:32
  • 76

《机器学习实战》实现时遇到的问题

《机器学习实战》第二章k-近邻算法,自己实现时遇到的问题,以及解决方法。做个记录。 1.写一个kNN.py保存了之后,需要重新导入这个kNN模块。报错:no module named...
  • witnessai1
  • witnessai1
  • 2016年09月20日 23:36
  • 2337

机器学习实战——使用K-近邻算法进行约会配对

任务:通过海伦收集的3个特征,如:            1.每年获得的飞行常客里程数    2.玩视频游戏所耗的时间百分比    3.每周消费的冰淇淋公升数 用K近邻的方法,预测海伦对未知对...
  • kelvinLLL
  • kelvinLLL
  • 2017年03月25日 17:43
  • 341

《 机器学习实战》(Machine Learning in Action) 一书 中的错误之处(内容、代码)

最近在学 机器学习,发现此书有错误的地方,写成博客,方便以后查找。(慢慢更新中……)...
  • yangysc
  • yangysc
  • 2015年05月16日 16:24
  • 1913
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【1】机器学习实战 第二章 k近邻算法
举报原因:
原因补充:

(最多只允许输入30个字)