【1】机器学习实战 第二章 k近邻算法

原创 2016年08月31日 16:36:55

1.tile函数的用法

tile函数的用法  tile函数是numpy中用来重复数组的函数,比如tile(A,n),功能是将数组A重复n次,构成一个新的数组。其中n可以是一个数字或一个数组。

2.sum函数

sum(a, axis=None, dtype=None, out=None, keepdims=False)

axis决定数组相加的形式

Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

3.字典的get函数

dict.get(key, default=None)

Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值

参数

  • key -- 字典中要查找的键。
  • default -- 如果指定键的值不存在时,返回该默认值。

eg:

dict = {'Name': 'Zara', 'Age': 27}

print "Value : %s" %  dict.get('Age')
print "Value : %s" %  dict.get('Sex', "Never")

%Value : 27
%Value : Never
4.scatter函数作图

matplotlib.pyplot.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

x, y : array_like, shape (n, )

Input data 坐标向量

s : scalar or array_like, shape (n, ), optional, default: 20

size in points^2.标记大小

c : color or sequence of color, optional, default标记颜色

5.raw_input()与input()的区别

点击打开链接


机器学习实战笔记(1)-K近邻算法

配套书:Peter Harrington 著 李锐 李鹏 曲亚东翻译 工信出版社 本次学习采取直接配套《机器学习实战笔记》,遇到什么数学和python问题,就单独的去反查,争取从实战中领悟。 ...
  • rockla
  • rockla
  • 2017年10月20日 17:01
  • 30

从零开始实战机器学习(1)—K近邻算法

最近开始学习机器学习算法,大致了解了一些基础知识后,准备真正编程实现一些机器算法,于是选择了Peter Harrington的机器学习实战这本书,打算将其中的算法实现一下。由于本书算法采用Python...

机器学习实战笔记-K近邻算法1(分类动作片与爱情片)

K近邻算法采用测量不同特征值之间的距离方法进行分类K近邻算法特点: 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值...

机器学习实战第2章-K近邻算法

一、K近邻算法概念:找一个输入数据周围K个样本里大多数的类别,则输入数据就是这个类别。二:优缺点优点: 1.简单,易于理解,易于实现,无需估计参数,无需训练; 2.适合对稀有事件进行分类; 3....

机器学习实战笔记(Python实现)-02-k近邻算法(kNN)

机器学习实战笔记(Python实现)-02-k近邻算法(kNN) -- 下面来看一下书上对这个算法的原理介绍:存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新...

《机器学习实战》读书笔记—k近邻算法c语言实现(win下)

#include #include #include #include #define K 10 //kNN中选取最近邻居的个数 #define LINE 1024 ...
  • lvchahp
  • lvchahp
  • 2014年11月09日 00:32
  • 1021

机器学习实战_k近邻算法源码详解

""" 参考文章 http://www.jianshu.com/p/a8ae004cf4f4 https://www.shiyanlou.com/courses/777实验楼 http://blog....
  • lj2048
  • lj2048
  • 2017年11月15日 20:19
  • 40

机器学习实战—k近邻算法(kNN)03-手写识别系统

使用k-近邻算法的手写识别系统  这里构造的系统只能识别数字0~9。   需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素×32像素的黑白图像。示例:使用k-近邻算法的...

机器学习实战--k近邻算法

最近在看《Machine Learning in Action》这本书,自己之前也没有接触过机器学习的相关内容,算是入门吧。书的内容实战性很强,笔者是用Python进行算法实现的,正好自己也能通过这本...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【1】机器学习实战 第二章 k近邻算法
举报原因:
原因补充:

(最多只允许输入30个字)