【1】机器学习实战 第二章 k近邻算法

原创 2016年08月31日 16:36:55

1.tile函数的用法

tile函数的用法  tile函数是numpy中用来重复数组的函数,比如tile(A,n),功能是将数组A重复n次,构成一个新的数组。其中n可以是一个数字或一个数组。

2.sum函数

sum(a, axis=None, dtype=None, out=None, keepdims=False)

axis决定数组相加的形式

Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

3.字典的get函数

dict.get(key, default=None)

Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值

参数

  • key -- 字典中要查找的键。
  • default -- 如果指定键的值不存在时,返回该默认值。

eg:

dict = {'Name': 'Zara', 'Age': 27}

print "Value : %s" %  dict.get('Age')
print "Value : %s" %  dict.get('Sex', "Never")

%Value : 27
%Value : Never
4.scatter函数作图

matplotlib.pyplot.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

x, y : array_like, shape (n, )

Input data 坐标向量

s : scalar or array_like, shape (n, ), optional, default: 20

size in points^2.标记大小

c : color or sequence of color, optional, default标记颜色

5.raw_input()与input()的区别

点击打开链接


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

从零开始实战机器学习(1)—K近邻算法

最近开始学习机器学习算法,大致了解了一些基础知识后,准备真正编程实现一些机器算法,于是选择了Peter Harrington的机器学习实战这本书,打算将其中的算法实现一下。由于本书算法采用Python...

机器学习实战--k近邻算法

最近在看《Machine Learning in Action》这本书,自己之前也没有接触过机器学习的相关内容,算是入门吧。书的内容实战性很强,笔者是用Python进行算法实现的,正好自己也能通过这本...

机器学习实战—k近邻算法(kNN)03-手写识别系统

使用k-近邻算法的手写识别系统  这里构造的系统只能识别数字0~9。   需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素×32像素的黑白图像。示例:使用k-近邻算法的...

机器学习实战笔记(Python实现)-02-k近邻算法(kNN)

机器学习实战笔记(Python实现)-02-k近邻算法(kNN) -- 下面来看一下书上对这个算法的原理介绍:存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新...

K近邻算法(一) python实现,手写数字识别(from机器学习实战)

k近邻法(KNN)算法概述算法概述优点 精度高、对异常值不敏感、无数据输入假定。 缺点 计算复杂度高、空间复杂度高。 试用数据范围 数值型和标称型工作原理:将新数据的每个特征与样本集中数据对...

机器学习实战笔记:k近邻算法

机器学习笔记:k近邻算法作为一个初学者,本博客为在学习<>一书的一些笔记和个人的一些理解.

机器学习实战——k近邻算法(kNN)01

有监督的学习算法。简而言之,k-近邻算法采用测量不同特征之间的距离方法进行分类。工作原理:  存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分...

机器学习实战—k近邻算法(kNN)02-改进约会网站的配对效果

示例:使用k-近邻算法改进约会网站的配对效果在约会网站上使用k-近邻算法: 1.收集数据:提供文本文件。 2.准备数据:使用Python解析文本文件。 3.分析数据:使用matplotlib画二...

机器学习实战笔记:K近邻算法

机器学习实战笔记1:K近邻算法
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)