关闭

时间序列分析之二:基本模型

1871人阅读 评论(0) 收藏 举报
分类:
时间序列建模的基本步骤如下
步骤一:对数据进行平稳性和高斯性检验
步骤二:如果非平稳和非高斯,需要进行平稳化处理
步骤三:根据自相关函数、偏相关函数、功率谱密度的特点选择特定的时间序列模型
步骤四:模型阶数的确定
步骤五:模型参数的确定
步骤六:模型正确性的检验
        时间序列模型建立在随机序列平稳性和白噪声激励的假设之上,这是因为实际的随机系统的数据大多都符合平稳性条件(期望为常数、相关函数只与间隔有关)。即线性平稳模型以随机差分方程为特点,意义为以白噪声作为激励通过线性滤波器的输入输出结果。

        随机差分方程可以写成此时的数据与所有时刻的白噪声的线性组合,也可以写成历史时刻的数据与此时刻的白噪声的线性组合,以差分算子为基础可以写成代数方程(也可以理解为Z变换)。
但是上述表示方法包含无穷多个参量,不具有实际意义,选择有限参数作为常用模型,包括:AR模型、MA模型、ARMA模型等(Auto-regress-moving-average)。

        由于时间序列模型的自相关函数、功率谱密度、偏相关函数、格林函数、逆格林函数是时间序列模型的特征函数。
通过对随机差分方程计算自相关函数可以将随机序列转化为确定的(关于自相关函数)差分方程,就可以采用确定的差分方程进行求解。而模型的功率谱密度同数字信号处理的Z变换,将差分算子B替换为e(-jw),再取模的平方即可。

偏相关函数与自相关函数是互逆的,格林函数是冲激响应,表示历史噪声对响应的影响,或者理解为记忆深度与强度。

对于不满足线性平稳的统计模型,可以通过平稳化处理,再利用之前的线性平稳模型进行处理。通过求d阶差分,将数据平稳化,得到ARIMA、IMA、ARI模型等。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:27544次
    • 积分:374
    • 等级:
    • 排名:千里之外
    • 原创:10篇
    • 转载:3篇
    • 译文:0篇
    • 评论:0条
    最新评论