时间序列分析之三:参数估计

原创 2013年12月02日 23:56:09

   在选定某种模型如ARMAARMAARIMA模型后,需要对模型的未知参数进行估计,估计的方法与数理统计中的参数点估计方法类似,有相关矩估计、最小二乘估计、最小方差估计、极大似然估计、最大熵估计等。

    在对参数进行估计前,需要知道各种常见统计量的计算方法。由于自相关函数、偏自相关函数、功率谱密度、格林函数等作为系统的特征函数,在给出大量的数据(样本)之后,如果得到这些特征函数的估计呢?

1)样本均值、样本方差、样本自相关函数、样本功率谱的计算

样本均值、样本方差同数理统计。

样本自相关函数:每个样本值减去样本均值后的自相关乘积平均。

样本功率谱:有两种方法,第一种间接法:通过先求样本自相关然后根据FFT计算得到

样本功率谱,第二种直接法:对样本数据得到频谱,再平方得功率谱。

2)相关矩估计

由于对随机差分方程求自相关函数后,变成关于自相关函数的确定的差分方程,对多个时刻可构成方程组(AR模型为线性方程组即Yule-Walker方程,计算简单,MAARMA型为非线性方程组,可采用牛顿-拉夫森算法进行迭代,计算复杂),这样就可得到模型的参数估计和噪声的方差。

3)最小二乘估计

对随机差分方程,代入量测数据,得到含噪声的线性方程组,采用最小二乘方法,可解出未知参数,由此可得到噪声方差,注意相关矩估计和最小二乘估计在N较大时效果相当。由于MAARMA模型中噪声含有多个,需要将历史噪声转化为数据的形式(逆转关系

式),这是一个非线性关系,计算量大。

4)线性最小方差估计

基本思想是用量测和噪声的线性组合去逼近量测数据,使得均方误差(平方和函数)最小的参数即为所求。最终可以得到估计的解析表达式和误差的平方和函数,使得平方和函数最小。

5)极大似然估计

使得量测数据发生的概率最大的参数选择就是参数的估计。似然函数是非线性的,通常由近似或数值算法进行求解。

6)最大熵估计(?)

香农提出信息熵的概念,最大熵准则是说选择自相关值使得熵达到最大,外推出下一自相关值,从信息论的观点,推算的自相关值对应的序列的随机性最强,含有最多的信息,这样就构造出了更多的自相关值,可用于谱估计。

SPSS应用——时间序列分析

预测:是对尚未发生或目前还不明确的事物进行预先的估计和推测,是在现时对事物将要发生的结果进行探讨和研究,简单地说就是指从已知事件测定未知事件。 为什么要预测呢,因为预测可以帮助了解事物发展的未来...
  • u010159842
  • u010159842
  • 2016年11月07日 16:58
  • 3612

基于最小二乘算法的参数估计(matlab程序和测试)

最小二乘法是参数估计中最常见的一种算法,在时间序列ARMA、曲线拟合、神经网络、最优化等领域有着非常广泛的应用。 这里我分享一下我写的一个最小二乘估计一个MATLAB函数,里面实现的算法有三种:递推...
  • qq514218063
  • qq514218063
  • 2013年12月13日 17:17
  • 7744

平稳时间序列参数估计

说明对未知参数的估计方法有三种:矩估计(运用p+q个样本的自相关系数估计总体的自相关系数),极大似然估计(使得联合密度函数达到最大的参数值),最小二乘估计(使得残差平方和达到最小的那组参数值即为最小二...
  • dingming001
  • dingming001
  • 2017年06月22日 09:06
  • 695

时间序列完全教程(R)

在商业应用中,时间是最重要的因素,能够提升成功率。然而绝大多数公司很难跟上时间的脚步。但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来。不要担心,本文并不会讨论时间机器,讨论的都是很实用的...
  • Earl211
  • Earl211
  • 2016年03月22日 17:43
  • 24718

时间序列分析步骤及sas代码

•         1. 时间序列数据的预处理:平稳性检验、纯随机性检验 •         2. 平稳时间序列数据分析 •         3. 非平稳时间序列数据分析    一.        ...
  • Brezee_xy
  • Brezee_xy
  • 2015年07月13日 20:59
  • 4429

多元时间序列分析

背景 时间序列分析 时间序列分析就是对可以获得的部分的系统输出数据进行分析,提取其蕴含的系统特征,构造对应的等价系统,从而完成对该系统的功能刻划,并依据相应的模型完成对系统未来行为预测的过程。从本...
  • u014203453
  • u014203453
  • 2016年11月05日 19:24
  • 3167

金融时间序列分析:1. 基础知识

1. 金融时间序列1.1什么是时间序列金融时间序列是属于时间序列数据的一种,他们就是有很强的时间性,数据前后具有很强的依赖性,切无法调整顺序,一般都是二维数据。 时间序列由于具有很强的序列行,而且数...
  • xiyanlgu
  • xiyanlgu
  • 2016年12月19日 19:26
  • 2755

数据分析-时间序列分析

时间序列分析和预测,举几个栗子:用优衣K在天猫的连续n年的销售数据,对双12的销售量进行预测。用阿里妈妈的站内站外媒体投放的监测数据,预估宝J在双12广告投放的效果。这些问题中数据的共同特点是序列中的...
  • afujin
  • afujin
  • 2015年12月08日 16:36
  • 1342

时间序列分析这件小事(七)----协整

真实世界中,其实有很少是平稳时间序列,通常都是含有一定趋势的时间序列,譬如GDP值等等。之前我们说了可以用差分的方法获取平稳序列,但是,一旦差分其实我们丢失了原始序列的一些信息,而且往往很难从实际的意...
  • qtlyx
  • qtlyx
  • 2016年12月05日 16:15
  • 1966

时间序列分析这件小事(二)--自回归

说到时间序列,那么就必须提起自回归了。什么是自回归呢,就是说未来的一个时点可以用之前的时点来进行回归预测,还是那一串数字,但是时间状态不同了,存在不同阶的时滞。 所以呢,我们首先要写一个时间滞后函数。...
  • qtlyx
  • qtlyx
  • 2016年12月02日 22:00
  • 1627
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:时间序列分析之三:参数估计
举报原因:
原因补充:

(最多只允许输入30个字)