时间序列分析之五:几种建模方法

原创 2013年12月02日 23:57:35

时间序列建模包含以下几个部分,识别模型类型、估计模型参数、模型定阶等。

 

1)模型识别

       针对平稳的数据,可采用自相关系数和偏相关系数的形态来识别模型类别。截断、拖尾现象。可通过统计判别或经验来判别是否截断和拖尾。针对ARMA模型的定阶,可采用p,q任选的方式,也可以使得q=p-1限制。

       针对季节性数据,可采用ARIMA模型,可通过试探或实际背景得到阶数d

       针对趋势性数据,可以通过拟合来得到,如一次、高次、指数、周期趋势、组合等

       针对含有异常的数据,通过外推可识别异常值。可通过去掉异常值或修正它再利用原来的模型,或者采用稳健性高的模型。

 

2BJ建模方法

(先平稳化再相关分析)

根据样本的自相关和偏相关函数的特性,初步判定模型的滑动平均、自回归阶数。

第一步:根据样本的自相关和偏相关函数的截断或拖尾识别模型

第二步:去掉趋势项

第三步:由低阶到高阶遍历进行拟合,参数定阶和估计

3PW建模方法

(先建模再处理)

从系统特新出发,由于线性时不变系统可以用ARMA(N,N-1)模拟,且每次参数增加2(有多种原因:物理背景,特征根,计算量),减少了模拟次数,在得到模型之前,不要进行平稳化,而是先建模再检验是否平稳。

流程:

第一步:从模型ARMA(2,1)开始,每次增加2

第二步:用F准则,看残差是否显著降低

 

4)长自回归、白噪声建模

只采用AR模型,这样计算简单,优势明显。

第一步:建立长自回归模型AR

第二步:求残差检验独立性

第三步:定阶和参数估计,计算ARMA的参数

SPSS应用——时间序列分析

预测:是对尚未发生或目前还不明确的事物进行预先的估计和推测,是在现时对事物将要发生的结果进行探讨和研究,简单地说就是指从已知事件测定未知事件。 为什么要预测呢,因为预测可以帮助了解事物发展的未来...
  • u010159842
  • u010159842
  • 2016年11月07日 16:58
  • 3589

时间序列完全教程(R)

在商业应用中,时间是最重要的因素,能够提升成功率。然而绝大多数公司很难跟上时间的脚步。但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来。不要担心,本文并不会讨论时间机器,讨论的都是很实用的...
  • Earl211
  • Earl211
  • 2016年03月22日 17:43
  • 24582

R语言实现金融数据的时间序列分析及建模

R语言实现金融数据的时间序列分析及建模 一、实验介绍 1.1 实验内容 本实验主要探讨了几种时间序列的预测模型,首先带领大家对时间序列有一个初步的认识再在这个基础之上,向读者介绍当下最常用的 A...
  • oxuzhenyi
  • oxuzhenyi
  • 2017年08月03日 12:17
  • 1086

基于时间序列的用户行为预测

最近老师给了一篇顶会的论文《Modeling and Predicting Behavioral Dynamics on the Web》,让我实现论文里提到的用户行为预测的方法。通过该论文掌握基本的...
  • lynnucas
  • lynnucas
  • 2015年08月24日 10:26
  • 2901

如何深入理解时间序列分析中的平稳性?

来自 :http://www.zhihu.com/question/21982358
  • fennvde007
  • fennvde007
  • 2014年07月11日 14:14
  • 3216

时间序列分析之 ARIMA 模型的JAVA实现

最近要用ARIMA模型预测用户的数量变化,所以调研了一下ARIMA模型,最后用JAVA实现了ARIMA算法。 一、ARIMA原理 ARIMA的原理主要参考的是ARIMA原理。 二、JAVA实现 弄懂了...
  • u010691898
  • u010691898
  • 2015年01月26日 13:06
  • 9863

数据分析-时间序列分析

时间序列分析和预测,举几个栗子:用优衣K在天猫的连续n年的销售数据,对双12的销售量进行预测。用阿里妈妈的站内站外媒体投放的监测数据,预估宝J在双12广告投放的效果。这些问题中数据的共同特点是序列中的...
  • afujin
  • afujin
  • 2015年12月08日 16:36
  • 1339

Python时间序列分析

什么是时间序列 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值。在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变...
  • qq_37267015
  • qq_37267015
  • 2017年05月08日 14:15
  • 3967

时间序列数据挖掘综述

时间序列数据挖掘综述 一、引言   时间序列是指按时间顺序排列的一组数据,是一类重要的复杂数据对象。作为数据库中的一种数据形式,它广泛存在于各种大型的商业、医学、工程和社会科学等数据库中,...
  • notail_woo
  • notail_woo
  • 2013年10月31日 22:15
  • 2282

非平稳时间序列趋势分析

有些时间序列具有非常显著的趋势,有时我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对未来的发展作出合理的预测。趋势拟合法趋势拟合法就是把时间作为自变量,相应的序列观测值做为因变量,建立序列值...
  • dingming001
  • dingming001
  • 2017年06月25日 10:21
  • 879
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:时间序列分析之五:几种建模方法
举报原因:
原因补充:

(最多只允许输入30个字)