有符号整数的表示范围

标签: 计算机
352人阅读 评论(0) 收藏 举报
分类:

结论:

  • n比特有符号整数的表示范围为 \([-2^{n-1} \quad 2^{n-1}-1\)]

(1) 对于无符号n比特整数,表示范围很好理解\([0 \quad 2^{n}-1\)];

(2) 对于有符号整数,计算机使用补码表示,同时在表示时采用了下面的准则:

  • 最高位为符号位,正数为0,负数为1;
  • 正数的反码以及补码与原码相同;
  • 负数需要对除符号位以外的所有位取反得到反码,然后反码加1得到补码。

下面给出一些具体情况的分析:

(1)为什么有符号char的表示范围是-128~127?

00000000到01111111,表示0到+127。10000001到11111111,表示-1到-127。大家可以注意到,10000000我们没有用到。因为如果我们把它看成-0,那么会和00000000发生重复。于是计算机将10000000定义为-128

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:466968次
    • 积分:5511
    • 等级:
    • 排名:第5338名
    • 原创:122篇
    • 转载:11篇
    • 译文:1篇
    • 评论:476条