关闭

Scale-Aware Face Detection

标签: 深度学习人脸检测
1129人阅读 评论(1) 收藏 举报
分类:

2017CVPR 文章链接: 《Scale-Aware Face Detection》

对于人脸检测,通常我们需要采用各种手段小心的处理多尺度的问题。事实上,对于很多待检测图像,其只在某个尺度上才有人脸存在。如果我们可以“提前预知”哪些尺度上存在人脸,就可以针对性的进行检测从而减少计算量。

1. 方法介绍

整个检测分为两个阶段:

  • stage1,输入缩小的图片进入Scale Proposal Network (SPN) 来预测在哪个尺度上存在人脸。
  • stage2,将图片按照尺度预测结果进行缩放,然后送入Single Scale RPN (SS-RPN)检测人脸。

2. 要点介绍

(1)Scale Proposal Network (SPN)

如上图,SPN网络为全卷积网络,可以接受任意大小的输入,并在最后通过Global Max Pooling来获得固定的 \(1 \times1 \times n\)大小的概率输出。 \(n\) 表示 \(n\)种不同的尺度,其为精心设计的 等比数列,定义如下:

假设最大和最小检测人脸分别为 \(l_{max}\) 和 \(l_{min}\),并定义指数范围为\(s_n = \log_2l_{max}\) 和 \(s_0 = \log_2l_{min}\)。 则相邻尺度的间隔为: \(d = (s_n-s_0)/n\)。

于是,最后第 \(i\) 个输出对应的人脸尺度范围为:

\([2^{s_0+(i-1)d},2^{s_0+id})\)

(2)Ground truth preparation

训练SPN所用的label该如何生成?

首先需要注意的一点是,标注bounding box存在很强的主观性,这也就意味着标记的人脸尺寸很可能不准。为了弱化这种主观偏差,这里采用5个人脸关键点来定义新的bounding box:

其中,\(o_x,\ o_y, \ o_s\) 为所有样本共享的offset参数。

有了人脸尺寸后,我们不是简单地将label置为非0即1(出现该尺寸则label置为1,否则置为0),因为这样很容易受噪声影响。 同样为了弱化这种影响,这里采用相对平滑的高斯分布来分配label。

其中的方差因子 \(\sigma\) 与ground truth的误差分布以及检测器窗口大小有关,文中实验设置为 \(\sigma = 0.4\)。

当有多个尺度的人脸时,最终的label是取多个高斯分布在对应位置的最大值而不是加和。总之思想类似于下图:

(3)Scaling strategy generation

怎样对SPN的输出进行后处理?

如上图,采用滑动窗口对SPN的输出进行平滑处理,窗口大小为检测器处理范围的一半; 然后采用一维NMS寻找极值点。

3. 分析

  • (1)在FDDB上表现中等

因为一旦尺度估计有问题,后续几乎无法弥补。

  • (2)人脸较少时,速度不错

所以,这种策略可以用在一些特殊场景下,算作一种不错的自适应策略。

1
0
查看评论

Scale-Aware Face Detection阅读笔记

https://arxiv.org/pdf/1706.09876.pdf 论文中通过两步来实现多尺度的人脸检测 Face Scale EstimationSingle Scale Detection 首先,估计出图片中存在的人脸的尺度,并且计算出每个尺度的置信度,再选取置信度高的,在这...
  • m0_37600149
  • m0_37600149
  • 2017-10-20 13:33
  • 216

Scale-aware Fast R-CNN for Pedestrian Detection

本文主要关注行人检测中的尺度问题。在图像中,离相机近的人尺寸大些,离相机远的人在图像中尺度小些。如下图所示:不同尺寸的人提取出的特征也不一样。以前大多数文献针对该问题只用一个模型来解决。本文提出了一个新的解决方案: 训练两个网络,一个对应大的尺寸,一个对应小的尺寸。 实验数据: 时...
  • cv_family_z
  • cv_family_z
  • 2015-11-25 14:50
  • 5124

行人检测论文笔记:Robust Real-Time Face Detection

知识点 傅里叶变换的一个推论: 一个时域下的复杂信号函数可以分解成多个简单信号函数的和,然后对各个子信号函数做傅里叶变换并再次求和,就求出了原信号的傅里叶变换。 卷积定理(Convolution Theorem):信号f和信号g的卷积的傅里叶变换,等于f、g各自的傅里叶变换的积 整个过程的核心...
  • JacobKong
  • JacobKong
  • 2017-02-18 21:04
  • 769

人脸检测--Scale-Aware Face Detection

Scale-Aware Face Detection CVPR2017针对人脸检测中的人脸多尺度问题,本文首先用一个 Scale Proposal Network (SPN) 估计出图像中人脸的尺度分布,然后按照该尺度归一化图像,再进行人脸检测 均匀分布的多尺度人脸检测有时是一种浪费,因为图像...
  • zhangjunhit
  • zhangjunhit
  • 2017-08-21 11:06
  • 1263

Scale-aware Fast R-CNN for Pedestrian Detection(2015)

1.Introduction      行人检测旨在预测图像中所有行人实例的bounding box。近年来,它已经引起了计算机视觉界的广泛关注[5],[38],[40],[7],[46],[6],[45],[10],[21],作为许多以人为中心的应用的重要组成部分,如...
  • xiaofei0801
  • xiaofei0801
  • 2017-06-01 16:30
  • 407

人脸检测识别文献阅读总结

1 在人脸检测的时候需要结合人脸特征点对齐来综合考虑人脸检测问题,因为人脸特征点对齐有助于提高人脸检测性能 下面的文献都论证了这个思想: Joint cascade face detection and alignment ECCV2014 Supervised Transformer Ne...
  • zhangjunhit
  • zhangjunhit
  • 2017-10-20 15:36
  • 666

Opencv face detection人脸检测

opencv face detection code人脸检测代码
  • hao529good
  • hao529good
  • 2015-04-23 16:40
  • 1151

论文《Joint Cascade Face Detection and Alignment》笔记

论文:Joint Cascade Face Detection and Alignment.pdf 实现:https://github.com/FaceDetect/jointCascade_py 部分内容引用自:http://www.cnblogs.com/sciencefans/p/439...
  • u010333076
  • u010333076
  • 2016-02-05 11:11
  • 3302

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文学习

1、Introduction (略)2、Method 这篇文章提出了一个新的框架整合了人脸检测以及人脸标注的两个任务。这个CNN框架包含三个部分,第一部分,用浅层的cnn快速获取预选的框。然后通过一个相对复杂的cnn来裁剪大部分没有人脸的框。最后用通过一个强力的cnn来调节结果并定位人脸的关键点...
  • u012235274
  • u012235274
  • 2016-11-10 14:26
  • 1680

【论文学习笔记】Joint Cascade Face Detection and Alignment

第一节: 关键思想是将人脸检测和人脸标点结合起来。 一个应用比较广泛的人脸检测方法,Viola-Jones检测器是基于以下两个原则进行检测的:1,逐步提升的级联结构;2,简单的特征。这种方法在日常生活场景中效果不甚理想。 其他有许多工作是针对多视角的人脸检测【10,17,27,7】他们采...
  • shixiangyun2
  • shixiangyun2
  • 2016-03-05 15:30
  • 4946
    个人资料
    • 访问:652028次
    • 积分:6848
    • 等级:
    • 排名:第4066名
    • 原创:135篇
    • 转载:11篇
    • 译文:1篇
    • 评论:523条