当前搜索:

caffe添加新层教程

时间节点2016.04,即caffe重大更新后(每一种层都对应一个同名cpp和hpp文件)。描述一下本次要实现层的功能:正向直接copy传播,反向时将梯度放缩指定倍。这个层对一些特定的网络结构有很重要的辅助作用,比如有时我们的网络存在分支,但我们不希望某一分支影响之前层的更新,那么我们就将梯度放缩0倍。(1)创建HPP头文件diff_cutoff_layer.hpp不同功能类型的层所引的头文件也不同...
阅读(20177) 评论(17)

VS编译生成MATLAB接口程序

实验平台:win10 64bit + VS2013 +MATLAB2014 64bit 首先说明一下我为什么要在VS下编译生成.mexw64文件,而不是直接在MATLAB里面进行mex编译:因为前者可以更加方便的附加dll和lib等链接库文件,而且后面调试起来也更加方便。(1)创建VS项目,选择Win32控制台应用程序,附加选项空项目。(2)在项目里面添加自己的头文件以及源文件。然后“源文件”右键“...
阅读(4837) 评论(0)

GoogLeNet系列解读

本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构。GoogLeNet Incepetion V1 Motivation Architectural Details GoogLeNet Conclusion GoogLeNet Inception V2 Introduction General Design Principles Factorizi...
阅读(38525) 评论(56)

解读Batch Normalization

目录 目录 1-Motivation 2-Normalization via Mini-Batch Statistics 测试 BN before or after Activation 3-Experiments本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training b...
阅读(11584) 评论(1)

系列解读Dropout

本文主要介绍Dropout及延伸下来的一些方法,以便更深入的理解。想要提高CNN的表达或分类能力,最直接的方法就是采用更深的网络和更多的神经元,即deeper and wider。但是,复杂的网络也意味着更加容易过拟合。于是就有了Dropout,大部分实验表明其具有一定的防止过拟合的能力。...
阅读(3370) 评论(0)

多尺度竞争卷积

此次所讲内容来自《Competitive Multi-scale Convolution》, 时间节点2015.121-模型先来看看作者最开始设计的模型:这里着重说明一下Maxout:从r1、r2、r3、r4中选择最大的响应作为输出。由于K*K大小的卷积操作中都采取了pad=K/2、stride=1的操作,因此r1、r2、r3、r4的大小是一致的。增加了Max pooling,最终得到了下图的网络基...
阅读(2266) 评论(0)

NMS——卷积网络改进实现

本文介绍了用卷积神经网络改进传统NMS的方法,文章来源于2016ICLR《A CONVNET FOR NON-MAXIMUM SUPPRESSION》,该文章状态为正在审核。 1-传统的NMS 2-NMS-ConvNet 2-1 映射制作score map 2-2 制作IOU层 2-3 网络解析 2-4 输出及Loss 未完待续...
阅读(7220) 评论(7)

人脸检测——CascadeCNN

本文介绍的人脸检测方法,来源于2015CVPR《A Convolutional Neural Network Cascade for Face Detection》。本篇文章的方法可以说是对经典的Viola jones方法的深度卷积网络实现,并没有让人眼前一亮的地方,但依然有以下几点可以学习。(1)网络级联下图是该方法的整个流程示意图,可以明显看出是3阶级联(12-net、24-net、48-net...
阅读(7672) 评论(2)

mxnet学习记录【1】

由于caffe依赖性太多,配置极其复杂,所以将接下来的学习转向mxnet.因此本文主要记录我的学习历程,如果描述有什么问题,欢迎大家的指正。mxnet的优点很明显,简洁灵活效率高 ,多机多卡支持好。mxnet的github下载链接:https://github.com/dmlc/mxnet/mxnet的开发文档链接:http://mxnet.readthedocs.org/en/latest/bui...
阅读(19221) 评论(15)

人脸检测——DDFD

本文所介绍的人脸检测,主要学习和实现了ICMR-2015年雅虎实验室的文章”Multi-view Face Detection Using Deep Convolutional Neural Networks”.这是我接触和实现的第一个深度学习案例,本文除了讲解该文的算法以外,也是对我近2个月工作的总结.学习还不够深入,有不足之处欢迎大家提出指正。 此外,本文在讲解的过程中会包含全部的源代码以及训练...
阅读(14243) 评论(178)

Rapid object detection using a boosted cascade of simple features-简译

原文参照Paul_Viola的《Rapid object detection using a boosted cascade of simplefeatures》 本次翻译,包含简单的个人总结以方便理解文章。翻译内容可以主要关注前4节,以便于快速把握文章内容。具体的分类器如何训练如何级联,后续会有博文详细解读。  翻译理解如果有问题的话,大家可以提出来。 简单特征的优化级联在快...
阅读(1706) 评论(5)

[转]ROC曲线-阈值评价标准

转自:http://blog.csdn.net/abcjennifer/article/details/7359370 ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从...
阅读(1129) 评论(0)

1-Haar特征的特点及计算

1.Haar特征          最早的Haar特征由PapageorgiouC.等提出(《A general framework for object detection》),后来PaulViola和Michal Jones提出利用积分图像法快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simplefea...
阅读(2273) 评论(0)

MATLAB 调用编译.c/.cpp文件

1、设置编译器 在命令窗口输入 mex -setup,根据提示选择合适的编译器。通常我们使用的都是“Microsoft Visual C++”编译器。 如果编译器设置有问题,具体可以到官网查看不同MATLAB支持的编译器类型以及具体的问题。不过,通常都不会有问题。 MathWorks 支持:http://cn.mathworks.com/help/matlab/call-mex-files-...
阅读(2238) 评论(0)

来自西弗吉利亚大学li xin整理的CV代码合集(转)

目录(?)[-] Image denoisingImage codingImage demosaicingImage interpolation and SuperresolutionRGBD image processingImage segmentationparsing and mattingImage deblurringBlind image deblurringTexture s...
阅读(2671) 评论(0)
137条 共10页首页 上一页 ... 6 7 8 9 10 ... 下一页 尾页
    个人资料
    • 访问:521677次
    • 积分:5882
    • 等级:
    • 排名:第4943名
    • 原创:125篇
    • 转载:11篇
    • 译文:1篇
    • 评论:492条