caffe层解读系列——Data以及ImageData层用法

直接举一个data层的使用例子:layer { name: "cifar" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mean_value: 128 mean_value: 128 mean_value: 128 ....
阅读(2739) 评论(12)

模型压缩——将模型复杂度加入loss function

这里介绍2017ICLR OpenReview中的一篇有关网络压缩的文章《Training Compressed Fully-Connected Networks with a Density-Diversity Penalty》。 **看文章标题就知道主要是针对全连接层的,由此我的好感就下降了一半。———————— 引言 ———————— 作者拿VGG说全连接层会占很多资源,压缩这个最重要。好...
阅读(1253) 评论(0)

DeepRebirth——通过融合加速网络

这里介绍2017ICLR OpenReview中的一篇有关网络加速的文章《DeepRebirth: A General Approach for Accelerating Deep Neural Network Execution on Mobile Devices》。 看文章标题觉得高大上,看方法细节觉得卧槽好水,看自己的验证结果好像还有点用。附:2017ICLR openreview http:...
阅读(1734) 评论(0)

C++ Map常见用法说明

C++中map提供的是一种键值对容器,里面的数据都是成对出现的,如下图:每一对中的第一个值称之为关键字(key),每个关键字只能在map中出现一次;第二个称之为该关键字的对应值。一. 声明//头文件 #includemap ID_Name;// 使用{}赋值是从c++11开始的,因此编译器版本过低时会报错,如visual studio 2012 map<int,...
阅读(13336) 评论(1)

深度模型一些新的运行框架或者辅助库工具等

主要记录一些新的深度学习有关的框架工具等,以作个人备份:(1) Android手机上的GPU加速DCNN(运行)库CNNdroid文章《CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural Networks on Android》github链接: https://github.com/ENCP/CNNdr...
阅读(2845) 评论(0)

caffe层解读系列——hinge_loss

—————————— Hinge Loss 定义 ——————————Hinge Loss 主要针对要求”maximum-margin”的分类问题,因此尤其适用于SVM分类。Hinge Loss的定义如下:\(l(y) = max(0,1-t\cdot y)\)其中, \(t=\pm1\) , 需要注意的是 \(y\) 并不是分类的label,而只是决策函数的输出。例如在线性SVM中, \(y=wx...
阅读(2121) 评论(0)

1 - 基于卡方检验的特征选择

基于卡方检验的特征选择,更多也可参考http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html———————— 原理简介 ———————— 卡方检验(\(\chi ^2\) test),是一种常用的特征选择方法,尤其是在生物和金融领域。\(\chi ^2\) 用来描...
阅读(1950) 评论(0)
    个人资料
    • 访问:405782次
    • 积分:4988
    • 等级:
    • 排名:第5914名
    • 原创:114篇
    • 转载:10篇
    • 译文:1篇
    • 评论:443条
    最新评论