一行代码改进NMS

一篇讲通过改进NMS来提高检测效果的论文。文章链接: 《Improving Object Detection With One Line of Code》Github链接: https://github.com/bharatsingh430/soft-nmsMotivation 绝大部分目标检测方法,最后都要用到 NMS-非极大值抑制进行后处理。 通常的做法是将检测框按得分排序,然后保留得分最高的框...
阅读(3389) 评论(7)

MobileNets

一篇讲如何设计轻量级网络的文章,来自Google,方法和创新不是很多,但实验太充分。不愧是谷歌,财大气粗,实验随便跑。文章链接: 《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》文章共从三点来探讨网络加速,下面依次介绍这三点以及部分关键性的实验。Depthwise Separabl...
阅读(2349) 评论(3)

什么是P问题、NP问题和NPC问题

本文转自“什么是P问题、NP问题和NPC问题”: http://www.matrix67.com/blog/archives/105, 并做了排版整理。这或许是众多OIer最大的误区之一。你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题...
阅读(554) 评论(0)

Beyond triplet loss—— Re-ID

一篇讲Person Re-ID的论文,来自CVPR2017,同样是改进了Triplet Loss。《Beyond triplet loss: a deep quadruplet network for person re-identification》 减小类内方差 和 增加类间方差...
阅读(1596) 评论(0)

More is Less——卷积网络加速

一篇讲网络加速的论文,来自2017CVPR。《More is Less: A More Complicated Network with Less Inference Complexitv》Introduction 目前做神经网络加速的主要有这几个方面: 低秩分解,定点运算、矢量量化、稀疏表示、特殊的轻量级网络结构。...
阅读(2800) 评论(0)

Re-ID with Triplet Loss

一篇讲Person Re-ID的论文,与人脸识别(认证)有很多相通的地方。 《In Defense of the Triplet Loss for Person Re-Identification》...
阅读(2793) 评论(0)

CNN不能识别Negative图像

一篇挺有意思的短文 《Deep Neural Networks Do Not Recognize Negative Images》。CNN可能还无法像人类一样理解到语义层面,而语义理解很可能是以后人工智能的一个重要层面。...
阅读(1724) 评论(0)

Dilated Convolution

本次介绍一篇有关语义分割的文章,其核心思想是如何不失分辨率的扩大感受野,该方法已被caffe默认支持。 该思想也可以应用到目标检测上来。文章《MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS》github项目链接: https://github.com/fyu/dilationIntroduction...
阅读(6121) 评论(0)

2D图形变换介绍

介绍刚性变换、相似变换、仿射变换、投影变换...
阅读(678) 评论(2)

C++ 类访问控制

最近在使用C++创建类的时候,忽然发现自己对于类访问控制 public,protected,private 的作用没有理解透彻,后来就查了些资料,这里以作记录。访问控制C++类的重要属性就是封装和继承。因此,最关键的问题就是权限 的问题,public,protected,private 控制的就是类内成员的访问权限。...
阅读(423) 评论(0)
    个人资料
    • 访问:401830次
    • 积分:4955
    • 等级:
    • 排名:第6007名
    • 原创:113篇
    • 转载:10篇
    • 译文:1篇
    • 评论:441条
    最新评论