新闻分类系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)

原创 2017年07月11日 12:12:24

新闻分类系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)

简介

新闻分类系统可以对十种新闻进行自动分类并显示准确性的结果。(交叉验证准确性在65%~70%,数据集一共3183,可增加数据集提高准确率。)

系统分为三部分:

  1. 爬虫部分,使用Requests处理http,post请求。Beautiful Soup处理HTML页面标签并提取信息。

目标网站是谣言百科网站,其实这个实战是我谣言处理系统的一部分,但是现阶段对于谣言处理系统我遇到了问题就是精度提高。

现阶段的方法我的想法是,第一个数据集增加,因为网络上很多谣言都是相似的,尤其是养生,历史之类的谣言新闻都是完全重复或者部分重复率很高的,这个算是从数据特征点出发的办法。

第二个是建立知识图谱,这个做起来就太胖大了,所以可以找某一部分做测试,然后得出结果。

第三个就是我现在研究的方法,对于“小数据”的研究其实可以看作一种聚类,以后数据很多,大部分数据都是没有标注标签的,人工标注不可能,现阶段用半监督学习的方法比较多,所以从小数据集中开始学习是一个以后经常遇到的问题,聚类问题现在发展和关注度相比神经网络比较低。

推荐原谷歌大脑成员Marcin Olof Szummer的博士论文《Learning from Partially Labeled Data》。

  1. 数据处理部分,数据集的整理和数据的预处理。(停用词数据集从网上随便找的)

  2. 分类器部分 ,用sklearn的SVM 支持向量机来分类数据集。

代码已经全部上传至github:https://github.com/sileixinhua/News-classification

开发环境

Beautiful Soup 4.4.0 文档: http://beautifulsoup.readthedocs.io/zh_CN/latest/#id28

Requests : http://cn.python-requests.org/zh_CN/latest/

Python3

sklearn :http://scikit-learn.org/stable/

Windows10 (CPU:4G 分类部分运行共需51秒)

sublime

jieba分词

这里写图片描述

爬虫数据集的网站:

http://www.yaoyanbaike.com/

目标网站的爬虫策略分析

图1:目标网站是谣言百科网站,是动态网站,信息分类明确,有爬去价值,没有敏感和保密信息,安全。

这里写图片描述

图2:十种信息的分类。

这里写图片描述

图3:单独新闻信息的页面,有标题,来源网站或作者,更新时间,内容。

这里写图片描述

图4:对应的HTML页面信息。标题和内容的class命名明确。

这里写图片描述

图5:某一类别信息下的新闻目录。

这里写图片描述

图6:下一页新闻信息的点击地址。

这里写图片描述

图7:下一页地址的html标签地址。

这里写图片描述

爬虫部分

# 2017年7月4日00:11:42
# silei
# 爬虫目标网站:http://www.yaoyanbaike.com/
# 获取信息BeautifulSoup+request

# -*- coding:UTF-8 -*-

from urllib import request
from bs4 import BeautifulSoup
import re
import sys
import codecs

if __name__ == "__main__":
    text_file_number = 0    # 同一类新闻下的索引数
    number = 1  # 同类别新闻不同页面下的索引数
    while (number <= 2):
        if number==1:   # 第一个新闻下地址是baby不是baby_数字所以要区分判断一下
            get_url = 'http://www.yaoyanbaike.com/category/baby.html'
        else:
            get_url = 'http://www.yaoyanbaike.com/category/baby_'+str(number)+'.html'   #这个是baby_数字,number就是目录索引数
        head = {}   #设置头
        head['User-Agent'] = 'Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166  Safari/535.19'
        # 模拟浏览器模式,定制请求头
        download_req_get = request.Request(url = get_url, headers = head)
        # 设置Request
        download_response_get = request.urlopen(download_req_get)
        # 设置urlopen获取页面所有内容
        download_html_get = download_response_get.read().decode('UTF-8','ignore')
        # UTF-8模式读取获取的页面信息标签和内容
        soup_texts = BeautifulSoup(download_html_get, 'lxml')
        # BeautifulSoup读取页面html标签和内容的信息
        for link  in soup_texts.find_all(["a"]):
            print(str(text_file_number)+"   "+str(number)+"    "+link.get('href'))
            # 打印文件地址用于测试
            s=link.get('href')
            if s.find("/a/") == -1:
                print("错误网址")   # 只有包含"/a/"字符的才是有新闻的有效地址
            else:
                download_url = link.get('href')
                head = {}
                head['User-Agent'] = 'Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166  Safari/535.19'
                download_req = request.Request(url = "http://www.yaoyanbaike.com"+download_url, headers = head)
                print("http://www.yaoyanbaike.com"+download_url)
                download_response = request.urlopen(download_req)
                download_html = download_response.read().decode('UTF-8','ignore')
                soup_texts = BeautifulSoup(download_html, 'lxml')
                texts = soup_texts.find_all('article')
                soup_text = BeautifulSoup(str(texts), 'lxml')
                p = re.compile("<[^>]+>")  
                text=p.sub("", str(soup_text))
                # 去除页面标签
                f1 = codecs.open('../data/baby/'+str(text_file_number)+'.txt','w','UTF-8')
                # 将信息存储在本地
                f1.write(text)
                f1.close()
                text_file_number = text_file_number + 1
        number = number + 1

数据处理部分

这部分分为两部分,第一部分是分词加去除停用词,去除停用词的停用词表是我从网上找的一个,停用词就是汉语当中的“的”,“得”,“地”等词。

第二部分是创建单词列表,并对出现的词做出排序,为创建词向量做的准备步骤。

# 2017年7月4日00:13:40
# silei
# jieba分词,停用词,数据可视化,知识图谱
# 数据文件数一共3183个
# baby,car,food,health,legend,life,love,news,science,sexual
# 129,410,409,406,396,409,158,409,409,38

# -*- coding:UTF-8 -*-

import jieba

dir = {'baby': 129,'car': 410,'food': 409,'health': 406,'legend': 396,'life': 409,'love': 158,'news': 409,'science': 409,'sexual': 38}
# 设置词典,分别是类别名称和该类别下一共包含的文本数量
data_file_number = 0
# 当前处理文件索引数

for world_data_name,world_data_number in dir.items():
    # 将词典中的数据分别复制到world_data_name,world_data_number中
    while (data_file_number < world_data_number):
        print(world_data_name)
        print(world_data_number)
        print(data_file_number)
        # 打印文件索引信息
        file = open('../data/raw_data/'+world_data_name+'/'+str(data_file_number)+'.txt','r',encoding= 'UTF-8')
        file_w = open('../data/train_data/'+world_data_name+'/'+str(data_file_number)+'.txt','w',encoding= 'UTF-8')
        for line in file:
            stoplist = {}.fromkeys([ line.strip() for line in open("../data/stopword.txt",encoding= 'UTF-8') ])  
            # 读取停用词在列表中
            seg_list = jieba.lcut(line,cut_all=False)
            # jieba分词精确模式
            seg_list = [word for word in list(seg_list) if word not in stoplist]  
            # 去除停用词
            print("Default Mode:", "/ ".join(seg_list))
            for i in range(len(seg_list)):
                file_w.write(str(seg_list[i])+'\n')
            # 分完词分行输入到文本中
            # file_w.write(str(seg_list))
            # print(line, end='')
        file_w.close()
        file.close()
        data_file_number = data_file_number + 1
    data_file_number = 0
# 2017年7月4日17:08:15
# silei
# 训练模型,查看效果
# 数据文件数一共3183个
# baby,car,food,health,legend,life,love,news,science,sexual
# 129,410,409,406,396,409,158,409,409,38

# -*- coding:UTF-8 -*-

dir = {'baby': 129,'car': 410,'food': 409,'health': 406,'legend': 396,'life': 409,'love': 158,'news': 409,'science': 409,'sexual': 38}
# 设置词典,分别是类别名称和该类别下一共包含的文本数量
data_file_number = 0
# 当前处理文件索引数

def MakeAllWordsList(train_datasseg):
    # 统计词频
    all_words = {}
    for train_dataseg in train_datasseg:
        for word in train_dataseg:
            if word in all_words:  
                all_words[word] += 1
            else:
                all_words[word] = 1
    # 所有出现过的词数目
    print("all_words length in all the train datas: ", len(all_words.keys()))
    # key函数利用词频进行降序排序
    all_words_reverse = sorted(all_words.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为list
    for all_word_reverse in all_words_reverse:
        print(all_word_reverse[0], "\t", all_word_reverse[1])
    all_words_list = [all_word_reverse[0] for all_word_reverse in all_words_reverse if len(all_word_reverse[0])>1]
    return all_words_list

if __name__ == "__main__":
    for world_data_name,world_data_number in dir.items():
        while (data_file_number < world_data_number):
            print(world_data_name)
            print(world_data_number)
            print(data_file_number)
            file = open('../data/raw_data/'+world_data_name+'/'+str(data_file_number)+'.txt','r',encoding= 'UTF-8')
            MakeAllWordsList(file)
            for line in file:
                print(line+'\n', end='')
            file.close()

分类识别部分

这部分有2个贝叶斯分类器可以选择,一个是nltk,另一个是sklearn,我选用的sklearn。

#coding: utf-8
import os
import time
import random
import jieba
import nltk
import sklearn
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt


def MakeWordsSet(words_file):
    words_set = set()
    with open(words_file, 'r', encoding='UTF-8') as fp:
        for line in fp.readlines():
            word = line.strip()
            if len(word)>0 and word not in words_set: # 去重
                words_set.add(word)
    return words_set

def TextProcessing(folder_path, test_size=0.2):
    folder_list = os.listdir(folder_path)
    data_list = []
    class_list = []

    # 类间循环
    for folder in folder_list:
        new_folder_path = os.path.join(folder_path, folder)
        files = os.listdir(new_folder_path)
        # 类内循环
        j = 0
        for file in files:
            if j > 410: # 每类text样本数最多100
                break
            with open(os.path.join(new_folder_path, file), 'r', encoding='UTF-8') as fp:
               raw = fp.read()
            # print raw
            ## --------------------------------------------------------------------------------
            ## jieba分词
            # jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windows
            word_cut = jieba.cut(raw, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertor
            word_list = list(word_cut) # genertor转化为list,每个词unicode格式
            # jieba.disable_parallel() # 关闭并行分词模式
            # print word_list
            ## --------------------------------------------------------------------------------
            data_list.append(word_list)
            class_list.append(folder)
            j += 1

    ## 划分训练集和测试集
    # train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size)
    data_class_list = list(zip(data_list, class_list))
    random.shuffle(data_class_list)
    index = int(len(data_class_list)*test_size)+1
    train_list = data_class_list[index:]
    test_list = data_class_list[:index]
    train_data_list, train_class_list = zip(*train_list)
    test_data_list, test_class_list = zip(*test_list)

    # 统计词频放入all_words_dict
    all_words_dict = {}
    for word_list in train_data_list:
        for word in word_list:
            if word in all_words_dict:  
                all_words_dict[word] += 1
            else:
                all_words_dict[word] = 1
    # key函数利用词频进行降序排序
    all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为list
    all_words_list = list(zip(*all_words_tuple_list))[0]

    return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list


def words_dict(all_words_list, deleteN, stopwords_set=set()):
    # 选取特征词
    feature_words = []
    n = 1
    for t in range(deleteN, len(all_words_list), 1):
        if n > 1000: # feature_words的维度1000
            break
        # print all_words_list[t]
        if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1<len(all_words_list[t])<5:
            feature_words.append(all_words_list[t])
            n += 1
    return feature_words


def TextFeatures(train_data_list, test_data_list, feature_words, flag='nltk'):
    def text_features(text, feature_words):
        text_words = set(text)
        ## -----------------------------------------------------------------------------------
        if flag == 'nltk':
            ## nltk特征 dict
            features = {word:1 if word in text_words else 0 for word in feature_words}
        elif flag == 'sklearn':
            ## sklearn特征 list
            features = [1 if word in text_words else 0 for word in feature_words]
        else:
            features = []
        ## -----------------------------------------------------------------------------------
        return features
    train_feature_list = [text_features(text, feature_words) for text in train_data_list]
    test_feature_list = [text_features(text, feature_words) for text in test_data_list]
    return train_feature_list, test_feature_list


def TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'):
    ## -----------------------------------------------------------------------------------
    if flag == 'nltk':
        ## nltk分类器
        train_flist = zip(train_feature_list, train_class_list)
        test_flist = zip(test_feature_list, test_class_list)
        classifier = nltk.classify.NaiveBayesClassifier.train(train_flist)
        # print classifier.classify_many(test_feature_list)
        # for test_feature in test_feature_list:
        #     print classifier.classify(test_feature),
        # print ''
        test_accuracy = nltk.classify.accuracy(classifier, test_flist)
    elif flag == 'sklearn':
        ## sklearn分类器
        classifier = MultinomialNB().fit(train_feature_list, train_class_list)
        # print classifier.predict(test_feature_list)
        # for test_feature in test_feature_list:
        #     print classifier.predict(test_feature)[0],
        # print ''
        test_accuracy = classifier.score(test_feature_list, test_class_list)
    else:
        test_accuracy = []
    return test_accuracy


if __name__ == '__main__':

    print("start")

    ## 文本预处理
    folder_path = '../data/demo'
    all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path, test_size=0.2)

    # 生成stopwords_set
    stopwords_file = '../data/stopword.txt'
    stopwords_set = MakeWordsSet(stopwords_file)

    ## 文本特征提取和分类
    # flag = 'nltk'
    flag = 'sklearn'
    deleteNs = range(0, 1000, 20)
    test_accuracy_list = []
    for deleteN in deleteNs:
        # feature_words = words_dict(all_words_list, deleteN)
        feature_words = words_dict(all_words_list, deleteN, stopwords_set)
        train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words, flag)
        test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag)
        test_accuracy_list.append(test_accuracy)
    print(test_accuracy_list)

    # 结果评价
    plt.figure()
    plt.plot(deleteNs, test_accuracy_list)
    plt.title('Relationship of deleteNs and test_accuracy')
    plt.xlabel('deleteNs')
    plt.ylabel('test_accuracy')
    plt.savefig('result.png')

    print("finished")

分类结果

这里写图片描述

感想

本来是想做谣言识别的系统,但是结果并不理想,发现可以当作一个新闻分类器来结尾。

为了谣言识别系统,现在钻研知识图谱,聚类和半监督学习。

从“小数据”出发,着手解决实际问题。

——————————————————————————————————-

有学习机器学习相关同学可以加群,交流,学习,不定期更新最新的机器学习pdf书籍等资源。

QQ群号: 657119450

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)

谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)简介谣言识别系统是新闻分类系统的后续,这次我补充了正确新闻的数据集,为了体现新闻的绝对正确性,我爬取了澎湃...

python模块以及导入出现ImportError: No module named 'xxx'问题

python中,每个py文件被称之为模块,每个具有__init__.py文件的目录被称为包。只要模 块或者包所在的目录在sys.path中,就可以使用import 模块或import 包来使用 如果你...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

AI是个不错的选择

前些日子看了奇虎360董事长周鸿祎的《智能主义》,感触颇深。总的来说,周董对公司的发展思路相当清晰,我由衷敬佩。他的许多观点,我也是所见略同。更令我欣喜的是,在大量阅读了有关计算机未来的发展前景解说以...

你会为 AI 转型么?我在考虑。。。

看到CSDN发起的征文活动[你会为 AI 转型么?](http://blog.csdn.net/blogdevteam/article/details/74550215),有点感想,想记录下来,可能不...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)