关闭

素数筛-筛出1到n的所有素数

396人阅读 评论(0) 收藏 举报
分类:

    判断一个数字是否为素数:一个数 n 如果是合数,那么它的所有的因子不超过sqrt(n)--n的开方,那么我们可以用这个性质用最直观的方法

来求出小于等于n的所有的素数。注意这里一个合数的约数是互补的,例如10的约数有1,2,5,2和5是互补的,1和10是互补的,因此小于sqrt(10)的那些只有1和2,只要判断小于sqrt(10)就能判断出是否为合数。

    num = 0;

    for(i=2; i<=n; i++)

    {  for(j=2; j<=sqrt(i); j++)

         if( j%i==0 ) break;

       if( j>sqrt(i) ) prime[num++] = i;  //这个prime[]是int型,跟下面讲的不同。

    }

    这就是最一般的求解n以内素数的算法。复杂度是o(n*sqrt(n))


 要设计出一种更好的算法要求能在几秒钟甚至一秒钟之内找出n以内的所有素数。于是就有了素数筛法。


    素数筛法是这样的:

    1.开一个大的bool型数组prime[],大小就是n+1就可以了.先把所有的下标为奇数的标为true,下标为偶数的标为false(偶数肯定是合数)

    2.然后:

      for( i=3; i<=sqrt(n); i+=2 )  //仍然只先判断对称的那一半,即 1到sqrt以内的那部分

      {   if(prime[i])               //如果是质数,则抠掉该质数的所有倍数,如果是合数,则不作处理 ,因为既然是合数,则必然有因子,该因子如果是质数,则该合数已经被筛过了,如果该因子是合数,则该因子的因子一定有质数  

          for( j=i+i; j<=n; j+=i ) prime[j]=false;   //把大于i的i的那些倍数从2i=i+i开始,3i,4i,一直到n以内的i的倍数都置为假,即这些也必然是合数

      }

    3.最后输出bool数组中的值为true的单元的下标,就是所求的n以内的素数了。

    原理很简单,就是当i是质(素)数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质

数的倍数筛掉。

    一个简单的筛素数的过程:n=30。

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

    第 1 步过后2 4 ... 28 30这15个单元被标成false,其余为true。

    第 2 步开始:

     i=3;  由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]标为false.

     i=4;  由于prime[4]=false,不在继续筛法步骤。

     i=5;  由于prime[5]=true, 把prime[10],[15],[20],[25],[30]标为false.

     i=6>sqrt(30)算法结束。

    第 3 步把prime[]值为true的下标输出来:

     for(i=2; i<=30; i++)

     if(prime[i]) printf("%d ",i);

    结果是 2 3 5 7 11 13 17 19 23 29

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:47393次
    • 积分:1295
    • 等级:
    • 排名:千里之外
    • 原创:69篇
    • 转载:12篇
    • 译文:17篇
    • 评论:1条