关闭

Hash表基础知识

318人阅读 评论(0) 收藏 举报
分类:

1.1 除法hash

H(k)=k mod m, 这里m不应该是2p幂次,否则对m取模等价于取k的低p位,除非k的低p位足以区分各个记录。

k是一个按基数2^p解释的字符串时,选m=2^p-1不好,因为对k的各个字符进行排列并不会改变其散列值.

M的选择应该取与2的整数幂不太接近的质数。

1.2   乘法hash

用关键字k乘以常数A(0<A<1)并取出结果的小数部分,然后用m乘以这个值再取floor,即H(A)=floor{m*[(k*A)mod one]} =floor{m*[k*A-floor(k*A)]},这是对m没有什么要求,可以选为2的某个幂次。

假设计算机的字长为w位,而关键字k可以用一个字长来表示,令A{[0-2^w]/2^w}的一个数,一般取做黄金分割数0.618,令s=A*2^w。先用s乘以k,结果是一个2w位的数,可以表示为2^r1*w0+r0.这里r1为高位字[2ww+1],而r0为低位字[w1]

1.3   解决冲突的方法

1.3.1         开放寻址法: 

Hi=(H(key)+di)MOD m,即当发生冲突时,依次按照序列di来看有没有有空的地方就插进去。这里的关键在于增量序列di,可以取伪随机序列或者线性序列。

1.3.2         hash法:Hi=RHi,即换个hash函数

1.3.3         链地址法:冲突的单词连接到一个指针上且按照关键词有序

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:47600次
    • 积分:1297
    • 等级:
    • 排名:千里之外
    • 原创:69篇
    • 转载:12篇
    • 译文:17篇
    • 评论:1条