[置顶] 创意视觉应用︱基于深度学习的CVaaS计算机视觉即服务案例(Computer Vision as a Service)

技术与技法日进千里,快速迭代过程中,真正能够留下的是应用场景的重构与对新商业范式的思考。 CVaaS 计算机视觉即服务的理念介绍 观点来源于:极视角科技联合创始人 罗韵 CVaaS 就是 Computer Vision as a Service, 我们把 CV 的部分标准化成为了一种服务,而每一个行业可以在这里找到自己行业需要的和图像处理、视频处理、计算机视觉相关的算法服务,然后他们可以整合这...
阅读(688) 评论(1)

[置顶] R+先知︱Facebook大规模时序预测『真』神器——Prophet(遍地代码图)

经统专业看到预测的packages都是很眼馋的。除了之前的forecast包,现在这个prophet功能也很强大。本packages是由机器之心报道之后,抽空在周末试玩几小时。一些基本介绍可见机器之心的《业界 | Facebook开源大规模预测工具Prophet:支持Python和R》 并不喜欢理论分析,能直接上案例的,一般不码字,力求简单粗暴!! 官网网址:https://fac...
阅读(1303) 评论(2)

[置顶] cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)

在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的“词向量”(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一章中总结的类似,当然由于入门较晚没有CIPS2016里面说法权威,于是把CIPS2016中的内容,做一个摘录。 CIPS2016 中文信息处理报告《第五章 语言表示与深度学习研究进展、现状及趋势》第三节 技术方法和研究现状...
阅读(2303) 评论(4)

[置顶] 迁移学习︱艺术风格转化:Artistic style-transfer+ubuntu14.0+caffe(only CPU)

说起来这门技术大多是秀的成分高于实际,但是呢,其也可以作为图像增强的工具,看到一些比赛拿他作训练集扩充,还是一个比较好的思路。如何在caffe上面实现简单的风格转化呢?好像网上的博文都没有说清楚,而且笔者也没有GPU机器,于是乎,走上了漫漫的研究逼死自己之路...作者实践机器配置:服务器:ubuntu16.04(8 core)+caffe+only CPU一、图像风格迁移:image style...
阅读(3052) 评论(2)

[置顶] R︱foreach+doParallel并行+联用迭代器优化内存+并行机器学习算法

接着之前写的并行算法parallel包,parallel相比foreach来说,相当于是foreach的进阶版,好多东西封装了。而foreach包更为基础,而且可自定义的内容很多,而且实用性比较强,可以简单的用,也可以用得很复杂。笔者将自己的学习笔记记录一下。R︱并行计算以及提高运算效率的方式(parallel包、clusterExport函数、SupR包简介)——————————————————...
阅读(1067) 评论(0)

R︱Yandex的梯度提升CatBoost 算法(官方述:超越XGBoost/lightGBM/h2o)

俄罗斯搜索巨头 Yandex 昨日宣布开源 CatBoost ,这是一种支持类别特征,基于梯度提升决策树的机器学习方法。 CatBoost 是由 Yandex 的研究人员和工程师开发的,是 MatrixNet 算法的继承者,在公司内部广泛使用,用于排列任务、预测和提出建议。Yandex 称其是通用的,可应用于广泛的领域和各种各样的问题。笔者相关文章:R+工业级GBDT︱微软开源 的LightGB...
阅读(40) 评论(0)

keras系列︱keras是如何指定显卡且限制显存用量

keras在使用GPU的时候有个特点,就是默认全部占满显存。 若单核GPU也无所谓,若是服务器GPU较多,性能较好,全部占满就太浪费了。 于是乎有以下三种情况: - 1、指定GPU - 2、使用固定显存的GPU - 3、指定GPU + 固定显存一、固定显存的GPU本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usag...
阅读(37) 评论(0)

python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离

之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数、互信息、轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F1,mAP、ROC曲线).一、acc、recall、F1、混淆矩阵、分类综合报告1、准确率第一种方式:accuracy_score# 准确率 import numpy as np from skl...
阅读(507) 评论(0)

主题模型︱几款新主题模型——SentenceLDA、CopulaLDA、TWE简析与实现

百度最近开源了一个新的关于主题模型的项目。文档主题推断工具、语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA)、SentenceLDA 和Topical Word Embedding(TWE)。 . 一、Familia简介帮Familia,打个小广告~ Familia的github 主题模型在工业界的应用范式可以抽象...
阅读(941) 评论(1)

Recording︱有价值的各类AI、机器学习比赛心得、经验抄录

今年kaggle华人优胜团队很多,所以经验、心得不少,都是干货慢慢收集。 .一、【干货】Kaggle 数据挖掘比赛经验分享1、了解数据分布◆ 分析特征变量的分布 ◇ 特征变量为连续值:如果为长尾分布并且考虑使用线性模型,可以对变量进行幂变换或者对数变换。 ◇ 特征变量为离散值:观察每个离散值的频率分布,对于频次较低的特征,可以考虑统一编码为“其他”类别。 ◆ 分析目标变量的分布 ◇ 目标变...
阅读(119) 评论(1)

keras系列︱seq2seq系列相关实现与案例(feedback、peek、attention类型)

之前在看《Semi-supervised Sequence Learning》这篇文章的时候对seq2seq半监督的方式做文本分类的方式产生了一定兴趣,于是开始简单研究了seq2seq。先来简单说一下这篇paper的内容: 创立的新形式Sequence AutoEncoder LSTM(SA-LSTM),Pre-trained RNNs are more stable, generalize be...
阅读(1529) 评论(0)

DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式

一、DBSCAN聚类概述基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现“球形”聚簇的缺点。 DBSCAN的核心思想是从某个核心点出发,不断向密度可达的区域扩张,从而得到一个包含核心点和边界点的最大化区域,区域中任意两点密度相连。1、伪代码 算法: DBSCAN 输入: E — 半径 MinPts — 给定点在 E 领域内成为核心对象的...
阅读(695) 评论(0)

keras系列︱利用fit_generator最小化显存占用比率

本文主要参考两篇文献: 1、《深度学习theano/tensorflow多显卡多人使用问题集》 2、基于双向LSTM和迁移学习的seq2seq核心实体识别 运行机器学习算法时,很多人一开始都会有意无意将数据集默认直接装进显卡显存中,如果处理大型数据集(例如图片尺寸很大)或是网络很深且隐藏层很宽,也可能造成显存不足。这个情况随着工作的深入会经常碰到,解决方法其实很多人知道,就是分块装入。以...
阅读(168) 评论(0)

依存可视化︱Dependency Viewer——南京大学自然语言处理研究组

来源网页:http://nlp.nju.edu.cn/tanggc/tools/DependencyViewer.html 视频演示网页:http://nlp.nju.edu.cn/tanggc/tools/DependencyViewer_demo.html 可视化效果效果如下: .1、数据格式如下:1 赵宁 赵宁 NR NR _ 4 d-genetive _ _ 2...
阅读(161) 评论(0)

Recorder︱深度学习小数据集表现、优化(Active Learning)、标注集网络获取

一、深度学习在小数据集的表现深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1、降低偏差,图像平移等操作 2、降低方差,dropout、随机梯度下降 先来看看深度学习在小数据集上表现的具体观点,来源于《撕起来了!谁说数据少就不能用深度学习?这锅俺不背!》 原文:https://simplystatistics.org/2017/05/31/deeplearning-vs-leekass...
阅读(151) 评论(0)

python︱用pyodbc连接数据库

直接连接数据库和创建一个游标(cursor) 数据查询(SQL语句为 select …from..where) 1、pyodbc连接import pyodbccnxn = pyodbc.connect('DRIVER={SQL Server};SERVER=xxx;DATABASE=xxx;UID=xxx;PWD=xxx') cursor = cnxn.cursor()cursor.execute(...
阅读(263) 评论(0)

深度学习在推荐领域的应用

作者: 吴岸城,菱歌科技首席算法科学家,致力于深度学习在文本、图像、预测推荐领域的应用。曾在中兴通讯、亚信(中国)担任研发经理、高级技术经理等职务。 责编:何永灿,欢迎人工智能领域技术投稿、约稿、给文章纠错,请发送邮件至heyc@csdn.net 本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅《程序员》 来源于:人工智能头条,深度学习在推荐领域的应用 首先要确...
阅读(315) 评论(0)

边缘检测︱基于 HED网络TensorFlow 和 OpenCV 实现图片边缘检测

本文摘录自《手机端运行卷积神经网络的一次实践 – 基于 TensorFlow 和 OpenCV 实现文档检测功能》 只截取感兴趣 的片段。 .一、边缘检测1、传统边缘检测Google 搜索 opencv scan document,是可以找到好几篇相关的教程的,这些教程里面的技术手段,也都大同小异,关键步骤就是调用 OpenCV 里面的两个函数,cv2.Canny() 和 cv2.findCo...
阅读(373) 评论(0)

keras&tensorflow+分布式训练︱实现简易视频内容问答框架

内容来源:Keras 之父讲解 Keras:几行代码就能在分布式环境训练模型 把 Keras API 直接整合入 TensorFlow 项目中,这样能与你的已有工作流无缝结合。至此,Keras 成为了 TensorFlow 内部的一个新模块:tf.keras,它包含完整的 Keras API。用 Keras API 定义模型,用 TensorFlow estimator 和 expe...
阅读(232) 评论(2)

keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

之前在博客《keras系列︱图像多分类训练与利用bottleneck features进行微调(三)》一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning。 看到github上有一份InceptionV3的fine-tuning并且可以实现。 我看到的keras微调的方式分为以下两种: fine-tun...
阅读(818) 评论(2)
242条 共17页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:660221次
    • 积分:8088
    • 等级:
    • 排名:第2407名
    • 原创:188篇
    • 转载:70篇
    • 译文:1篇
    • 评论:204条
    作者简介
      技术与技法日进千里,快速迭代过程中,真正能够留下的是应用场景的重构与对新商业范式的思考。 ——微信公众号:素质云笔记
    博客专栏
    最新评论