TensorFlow Doc编程指南——2 Tensor的秩,形状和类型

翻译 2017年08月02日 10:11:59

TensorFlow程序使用一个tensor数据结构来代表所有数据。你可以认为一个TensorFlow的tensor是一个n维数组或者列表。一个tensor有一个静态类型和动态维度。只有tensor可以在计算图节点之间被传递。

Rank

    在TensorFlow系统中,tensor可用被称为“秩”(rank)的维度单元描述。Tensor的秩与矩阵的秩不一样。Tensor的秩(有时也叫“序”(order)或者“”(degree)又或者“n-维度”)是tensor维度的数量。例如,下面的tensor(定义为一个Python列表)的秩为2:
 t =[[1,2,3],[4,5,6],[7,8,9]]
    我们通常会把一个秩为2的tensor看作为一个矩阵,秩为1的是一个向量。对于秩为2的tensor,你可以用t[i,j]这样的语法来获取任意元素。而对于一个秩为3的tensor,你需要使用t[i,j,k]来获取一个元素。
Rank Math entity Python example
0 Scalar (magnitude only) s = 483
1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3]
2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n-Tensor (you get the idea) ....

形状

    Tensorflow文档使用三种惯用标记来描述tensor的维度:秩、形状和维数。下表这些标记相互之间的对应关系:
Rank Shape Dimension number Example
0 [] 0-D A 0-D tensor. A scalar.
1 [D0] 1-D A 1-D tensor with shape [5].
2 [D0, D1] 2-D A 2-D tensor with shape [3, 4].
3 [D0, D1, D2] 3-D A 3-D tensor with shape [1, 4, 3].
n [D0, D1, ... Dn-1] n-D A tensor with shape [D0, D1, ... Dn-1].
    形状可以通过Python的整型列表、元组来表示,或者通过tf.TensorShape

数据类型

    除了维度外,tensor还有数据类型。你可以指定tensor属于下表中任何一种数据类型:
Data type Python type Description
DT_FLOAT tf.float32 32 bits floating point.
DT_DOUBLE tf.float64 64 bits floating point.
DT_INT8 tf.int8 8 bits signed integer.
DT_INT16 tf.int16 16 bits signed integer.
DT_INT32 tf.int32 32 bits signed integer.
DT_INT64 tf.int64 64 bits signed integer.
DT_UINT8 tf.uint8 8 bits unsigned integer.
DT_UINT16 tf.uint16 16 bits unsigned integer.
DT_STRING tf.string Variable length byte arrays. Each element of a Tensor is a byte array.
DT_BOOL tf.bool Boolean.
DT_COMPLEX64 tf.complex64 Complex number made of two 32 bits floating points: real and imaginary parts.
DT_COMPLEX128 tf.complex128 Complex number made of two 64 bits floating points: real and imaginary parts.
DT_QINT8 tf.qint8 8 bits signed integer used in quantized Ops.
DT_QINT32 tf.qint32 32 bits signed integer used in quantized Ops.
DT_QUINT8 tf.quint8 8 bits unsigned integer used in quantized Ops.

Tensorflow之数据类型

import tensorflow as tf#定义常量tf.string是字符串类型 hello = tf.constant('Hello,world!', dtype=tf.string) ses...
  • baidu_15113429
  • baidu_15113429
  • 2017年09月22日 20:31
  • 259

TensorFlow学习(二):变量常量类型

更新时间:2017.2.27 tensorflow 1.0出来了,API和以前有了一些不一样,所以这里把把之前的代码迁移到新的上面去。 格式有问题,慢慢调….一.概览还记的上节TensorFlow...
  • xierhacker
  • xierhacker
  • 2016年11月13日 21:03
  • 30132

tesorflow源码

  • 2017年11月21日 13:23
  • 22.2MB
  • 下载

Tensorflow一些常用基本概念与函数(4)

摘要:本系列主要对tf的一些常用概念与方法进行描述。本文主要针对tensorflow的模型训练Training与测试Testing等相关函数进行讲解。为‘Tensorflow一些常用基本概念与函数’系...
  • lenbow
  • lenbow
  • 2016年08月16日 11:22
  • 47516

TensorFlow学习--张量的数据类型/阶/形状/常用API

TensorFlow即张量的流动,即保持计算节点不变让数据以张量的形式进行流动.张量tensor可以是一个变量/数组/多维数组等.tensor的几个重要属性:Data type/数据类型即tensor...
  • akadiao
  • akadiao
  • 2017年10月25日 18:53
  • 379

TensorFlow学习(六):形状相关操作

更新:2017.12.14 删除很多讲解操作,保留基本的函数 一.基本形状操作 tf.shape(input, name=None, out_type=tf.int32) 作...
  • xierhacker
  • xierhacker
  • 2016年12月24日 16:35
  • 4899

torch从零学习笔记系列

Tensortensor 是torch里最重要的一种数据结构,专门为数值数据设计的Multi-dimensional matrix一个tensor 可以认为是一个多维矩阵,我们处理数据的时候经常把数据...
  • huxcai
  • huxcai
  • 2016年12月09日 15:53
  • 967

Caffe - 基于Intel优化的Caffe框架训练和部署深度学习网络

基于Intel优化的Caffe框架训练和部署深度学习网络原文.目录: - 摘要 - 安装 - 数据层 - 数据集准备 - 训练 - 多节点分布式训练 - 微调 - 测试 - 特征提取...
  • oJiMoDeYe12345
  • oJiMoDeYe12345
  • 2017年05月22日 22:02
  • 4559

Effective TensorFlow Chapter 2: 理解静态和动态的Tensor类型的形状

理解静态和动态的Tensor类型的形状本文翻译自: 《Understanding static and dynamic shapes》, 如有侵权请联系删除,仅限于学术交流,请勿商用。如有谬误,请联系...
  • LoseInVain
  • LoseInVain
  • 2017年12月10日 00:19
  • 270

tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型

tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程。 ...
  • dcrmg
  • dcrmg
  • 2018年01月09日 20:47
  • 375
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TensorFlow Doc编程指南——2 Tensor的秩,形状和类型
举报原因:
原因补充:

(最多只允许输入30个字)