# TensorFlow程序使用一个tensor数据结构来代表所有数据。你可以认为一个TensorFlow的tensor是一个n维数组或者列表。一个tensor有一个静态类型和动态维度。只有tensor可以在计算图节点之间被传递。

## Rank

在TensorFlow系统中，tensor可用被称为“秩”（rank）的维度单元描述。Tensor的秩与矩阵的秩不一样。Tensor的秩（有时也叫“序”(order)或者“”(degree)又或者“n-维度”）是tensor维度的数量。例如，下面的tensor（定义为一个Python列表）的秩为2：
 t =[[1,2,3],[4,5,6],[7,8,9]]
我们通常会把一个秩为2的tensor看作为一个矩阵，秩为1的是一个向量。对于秩为2的tensor，你可以用t[i,j]这样的语法来获取任意元素。而对于一个秩为3的tensor，你需要使用t[i,j,k]来获取一个元素。
Rank Math entity Python example
0 Scalar (magnitude only) s = 483
1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3]
2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n-Tensor (you get the idea) ....

## 形状

Tensorflow文档使用三种惯用标记来描述tensor的维度：秩、形状和维数。下表这些标记相互之间的对应关系：
Rank Shape Dimension number Example
0 [] 0-D A 0-D tensor. A scalar.
1 [D0] 1-D A 1-D tensor with shape [5].
2 [D0, D1] 2-D A 2-D tensor with shape [3, 4].
3 [D0, D1, D2] 3-D A 3-D tensor with shape [1, 4, 3].
n [D0, D1, ... Dn-1] n-D A tensor with shape [D0, D1, ... Dn-1].
形状可以通过Python的整型列表、元组来表示，或者通过tf.TensorShape

## 数据类型

除了维度外，tensor还有数据类型。你可以指定tensor属于下表中任何一种数据类型：
Data type Python type Description
DT_FLOAT tf.float32 32 bits floating point.
DT_DOUBLE tf.float64 64 bits floating point.
DT_INT8 tf.int8 8 bits signed integer.
DT_INT16 tf.int16 16 bits signed integer.
DT_INT32 tf.int32 32 bits signed integer.
DT_INT64 tf.int64 64 bits signed integer.
DT_UINT8 tf.uint8 8 bits unsigned integer.
DT_UINT16 tf.uint16 16 bits unsigned integer.
DT_STRING tf.string Variable length byte arrays. Each element of a Tensor is a byte array.
DT_BOOL tf.bool Boolean.
DT_COMPLEX64 tf.complex64 Complex number made of two 32 bits floating points: real and imaginary parts.
DT_COMPLEX128 tf.complex128 Complex number made of two 64 bits floating points: real and imaginary parts.
DT_QINT8 tf.qint8 8 bits signed integer used in quantized Ops.
DT_QINT32 tf.qint32 32 bits signed integer used in quantized Ops.
DT_QUINT8 tf.quint8 8 bits unsigned integer used in quantized Ops.

• 本文已收录于以下专栏：

## Intel系统编程指南第十一章——11.11 存储器类型范围寄存器（MTRR）

Intel系统编程指南第十一章——11.11 存储器类型范围寄存器（MTRR）

## 《高质量C++/C编程指南》笔记——内存管理1-2

7.1 内存分配方式 内存分配方式有三种： （1）从静态存储区域分配。内存在程序编译的时候就已经分配好，这块内存在程序的整个运行期间都存在。例如全局变量，static变量。 （2）在栈上创建。在...

## linux与unix系统shell编程指南——2

• 2011-05-05 23:48
• 12.37MB
• 下载

## C~C++程序员实用大全——C~C++最佳编程指南.pdf(2)

• 2010-11-13 14:00
• 13.77MB
• 下载

## LINUX与UNIX SHELL编程指南——2

• 2008-07-23 17:53
• 2.36MB
• 下载

## C~C++程序员实用大全——C~C++最佳编程指南2

• 2008-01-10 14:13
• 7.81MB
• 下载

举报原因： 您举报文章：深度学习：神经网络中的前向传播和反向传播算法推导 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)