# TensorFlow程序使用一个tensor数据结构来代表所有数据。你可以认为一个TensorFlow的tensor是一个n维数组或者列表。一个tensor有一个静态类型和动态维度。只有tensor可以在计算图节点之间被传递。

## Rank

在TensorFlow系统中，tensor可用被称为“秩”（rank）的维度单元描述。Tensor的秩与矩阵的秩不一样。Tensor的秩（有时也叫“序”(order)或者“”(degree)又或者“n-维度”）是tensor维度的数量。例如，下面的tensor（定义为一个Python列表）的秩为2：
 t =[[1,2,3],[4,5,6],[7,8,9]]
我们通常会把一个秩为2的tensor看作为一个矩阵，秩为1的是一个向量。对于秩为2的tensor，你可以用t[i,j]这样的语法来获取任意元素。而对于一个秩为3的tensor，你需要使用t[i,j,k]来获取一个元素。
Rank Math entity Python example
0 Scalar (magnitude only) s = 483
1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3]
2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n-Tensor (you get the idea) ....

## 形状

Tensorflow文档使用三种惯用标记来描述tensor的维度：秩、形状和维数。下表这些标记相互之间的对应关系：
Rank Shape Dimension number Example
0 [] 0-D A 0-D tensor. A scalar.
1 [D0] 1-D A 1-D tensor with shape [5].
2 [D0, D1] 2-D A 2-D tensor with shape [3, 4].
3 [D0, D1, D2] 3-D A 3-D tensor with shape [1, 4, 3].
n [D0, D1, ... Dn-1] n-D A tensor with shape [D0, D1, ... Dn-1].
形状可以通过Python的整型列表、元组来表示，或者通过tf.TensorShape

## 数据类型

除了维度外，tensor还有数据类型。你可以指定tensor属于下表中任何一种数据类型：
Data type Python type Description
DT_FLOAT tf.float32 32 bits floating point.
DT_DOUBLE tf.float64 64 bits floating point.
DT_INT8 tf.int8 8 bits signed integer.
DT_INT16 tf.int16 16 bits signed integer.
DT_INT32 tf.int32 32 bits signed integer.
DT_INT64 tf.int64 64 bits signed integer.
DT_UINT8 tf.uint8 8 bits unsigned integer.
DT_UINT16 tf.uint16 16 bits unsigned integer.
DT_STRING tf.string Variable length byte arrays. Each element of a Tensor is a byte array.
DT_BOOL tf.bool Boolean.
DT_COMPLEX64 tf.complex64 Complex number made of two 32 bits floating points: real and imaginary parts.
DT_COMPLEX128 tf.complex128 Complex number made of two 64 bits floating points: real and imaginary parts.
DT_QINT8 tf.qint8 8 bits signed integer used in quantized Ops.
DT_QINT32 tf.qint32 32 bits signed integer used in quantized Ops.
DT_QUINT8 tf.quint8 8 bits unsigned integer used in quantized Ops.

• 本文已收录于以下专栏：

## Tensorflow之数据类型

import tensorflow as tf#定义常量tf.string是字符串类型 hello = tf.constant('Hello,world!', dtype=tf.string) ses...
• baidu_15113429
• 2017年09月22日 20:31
• 259

## TensorFlow学习（二）：变量常量类型

• xierhacker
• 2016年11月13日 21:03
• 30132

## tesorflow源码

• 2017年11月21日 13:23
• 22.2MB
• 下载

## Tensorflow一些常用基本概念与函数（4）

• lenbow
• 2016年08月16日 11:22
• 47516

## TensorFlow学习－－张量的数据类型/阶/形状/常用API

TensorFlow即张量的流动，即保持计算节点不变让数据以张量的形式进行流动．张量tensor可以是一个变量/数组/多维数组等．tensor的几个重要属性：Data type/数据类型即tensor...
• 2017年10月25日 18:53
• 379

## TensorFlow学习（六）：形状相关操作

• xierhacker
• 2016年12月24日 16:35
• 4899

## torch从零学习笔记系列

Tensortensor 是torch里最重要的一种数据结构，专门为数值数据设计的Multi-dimensional matrix一个tensor 可以认为是一个多维矩阵，我们处理数据的时候经常把数据...
• huxcai
• 2016年12月09日 15:53
• 967

## Caffe - 基于Intel优化的Caffe框架训练和部署深度学习网络

• oJiMoDeYe12345
• 2017年05月22日 22:02
• 4559

## Effective TensorFlow Chapter 2: 理解静态和动态的Tensor类型的形状

• LoseInVain
• 2017年12月10日 00:19
• 270

## tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型

tensorflow的命名来源于本身的运行原理，tensor(张量)意味着N维数组，flow（流）意味着基于数据流图的计算，所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程。 ...
• dcrmg
• 2018年01月09日 20:47
• 375

举报原因： 您举报文章：TensorFlow Doc编程指南——2 Tensor的秩，形状和类型 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)