关闭

LSTM 生成柳永作品

LSTM生成 古诗词, 柳永作品...
阅读(241) 评论(0)

LDA 视频收藏描述 预测分类

视频收藏夹推荐 中仅仅利用了视频的分类标签 进行AP聚类及rank算法排序,考虑将排序高的作为推荐来源。 如可以将用户的收藏的视频描述作为输入进行基于语义的分类, 可以得到对于用户更为立体的认识。 This article inspired by  http://blog.csdn.net/u011239443/article/details/53735609...
阅读(244) 评论(0)

视频收藏夹推荐

写非TensorFlow python代码不免有退步的感觉,这次就水一波吧。...
阅读(175) 评论(0)

Deep Learning in Customer Churn Prediction (六) (Spark SQL 特征构建实践)

Deep Learning in Customer Churn Prediction (五) (Spark RDD 特征构建实践尝试) 中进行了使用RDD进行特征构建的尝试,如果使用scala容器作为初始化RDD的载体 可以得到一个初步可接受的结果,但是10倍数据的产生速度较 Deep Learning in Customer Churn Prediction (三) (初步特征构建实践及基...
阅读(204) 评论(0)

TensorFlow 中文语音识别

本文转载自 http://blog.topspeedsnail.com/archives/10696 数据集下载参见该文。 其中下面的代码进行了一些小小的调整。 其中包含缩进、版本方面(作者是python 3.5)、求wav_max_len方面(并行)、tf.nn.ctc_loss的参数顺序。 (具体改变可与原文链接中的代码进行对比) 并在程序中给出了一些小注解。 感谢作者将这么...
阅读(1641) 评论(8)

Deep Learning in Customer Churn Prediction (五) (Spark RDD 特征构建实践尝试)

使用 Spark 初探 (一) 中关于Spark RDD的初步知识可以尝试给出 Deep Learning in Customer Churn Prediction (三) (初步特征构建实践及基本模型试验) 中对应Python 数据处理部分脚本的Spark Scala实现 引入Spark实现的主要原因是减少手动分配资源的麻烦。 有了RDD就不用费心手动分配内存,或者手动分割数...
阅读(140) 评论(0)

Spark 初探 (一)

译自 http://spark.apache.org/docs/latest/programming-guide.html 有了scala的基础,可以开始接触一下Spark 本人小白,仅仅是初步尝试。 进行Spark编程,第一个必要工作是新建SparkContext对象 SparkContext Main entry point of Spark functionality,...
阅读(138) 评论(0)

Deep Learning in Customer Churn Prediction (四) (关注的Churn是大多数时的聚类解决方案)

上面提到的主要是使用classifier来对于churn进行判别的方法, 这里要指出的是,一般的将imbalance视为对模型构建的不理因素, 但个人认为这个“不利因素”,有时也是可以利用的。 当关注的churn是imbalance的大多数样本时, imbalance本身正是样本本身的重要特征,利用imbalance所描述的非平衡信息, 可以获得很大帮助。 这里还要指出...
阅读(187) 评论(0)

Deep Learning in Customer Churn Prediction (三) (初步特征构建实践及基本模型试验)

有关特征构建的思路可以参见Deep Learning in Customer Churn Prediction (一) (提升平衡随机森林及特征构建) 主要采取该文中对于移动通信系统的特征处理方法,其提出使用对于通信时间进行分段统计的方法。 数据的基本准备是将不同Customer的数据区分开, 采用pandas DataFrame进行存储,假设第一列指定了客户操作的时间(pd.Timesta...
阅读(252) 评论(0)

Deep Learning in Customer Churn Prediction (二) (WTTE模型 ——what time to the next event)

本文部分摘自 https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling/   相应github链接见 https://github.com/ragulpr/wtte-rnn/ 由于该工程已经在git上开源,故实际的工程使用是可以期待的。   另一个描述流失客户的观点是使用, 相反的观点 并不关注流失...
阅读(226) 评论(0)

Deep Learning in Customer Churn Prediction (一) (提升平衡随机森林及特征构建)

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors   I. Introduction   A.Current Machine Learning Pipeline at Framed...
阅读(359) 评论(0)

LSTM 递归神经网络 基本结构 及 TensorFlow 示例模型介绍

节选下面部分链接的文章对LSTM进行了解。 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Essential to these successes is the use of “LSTMs”, a very special kind of recurrent neu...
阅读(1021) 评论(0)

Machine Learning is Fun!(基本概念介绍与RNN导引)

本文主要内容来自  https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471 What is machine learning? Machine learning is the idea that there are generic alogrithms that can tell you something in...
阅读(295) 评论(0)

scala 初探(二)

一般地 scala val对应于C++ const Scala有一些 比较灵活的使用方法 如所谓 前缀方法及后缀方法 实际就是 方法 没有参数及只有一个参数 当这种情况下 可以将该方法使用 前缀或后缀的形式进行调用。 一个简单的例子如下: package scalaStudy /** * Created by admin on 2017/4/18. */ c...
阅读(138) 评论(0)

Akka TypedActor

TypedActor 前面已经对UntypedActor进行比较多的使用 并给出一些例子 现在 对于TypedActor给出一些介绍 A typed actor has two parts- a publicly defined interface an implements of the interface Calls to the publicly defined inte...
阅读(133) 评论(0)
125条 共9页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:50302次
    • 积分:1599
    • 等级:
    • 排名:千里之外
    • 原创:61篇
    • 转载:12篇
    • 译文:52篇
    • 评论:9条
    最新评论