Mat、cvMat与IplImage

转载 2016年11月14日 21:39:12

Mat有3个重要的方法:

         1、Mat mat imread(const String* filename);         读取图像

         2、imshow(const string frameName, InputArray mat);      显示图像

         3、imwrite (const string& filename, InputArray img);    储存图像

Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。

A.Mat -> IplImage

同样只是创建图像头,而没有复制数据。

例: // 假设Mat类型的imgMat图像数据存在

IplImage pImg= IplImage(imgMat); 

B.Mat -> CvMat

与IplImage的转换类似,不复制数据,只创建矩阵头。

例: // 假设Mat类型的imgMat图像数据存在

     CvMat cvMat imgMat;

二、CvMat类型与IplImage类型:“图像”类型

       在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。

补充:IplImageCvMat派生,而CvMatCvArr派生即CvArr -> CvMat -> IplImage

            CvArr用作函数的参数,无论传入的是CvMatIplImage,内部都是按CvMat处理。

1.CvMat

A.CvMat-> IplImage

IplImage* img cvCreateImage(cvGetSize(mat),8,1);
cvGetImage(matI,img);

cvSaveImage("rice1.bmp",img);

B.CvMat->Mat

与IplImage的转换类似,可以选择是否复制数据。

Mat::Mat(const CvMat* m, bool copyData=false);

在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。

但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:

              CvMat* cvCreatMat(int rows ,int cols int type);

这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。

 

2.IplImage

在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。

IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。

IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。

dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。

IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。

A.IplImage -> Mat

IplImage* pImg cvLoadImage("lena.jpg");
Mat img(pImg,0); // 0是不複製影像,也就是pImgimgdata共用同個記憶體位置,header各自有
B.IplImage -> CvMat

1CvMat mathdr, *mat cvGetMat( img, &mathdr );

法2CvMat *mat cvCreateMat( img->height, img->width, CV_64FC3 );
  cvConvert( img, mat );

C.IplImage*-> BYTE*

BYTE* data= img->imageData;

 

CvMat和IplImage创建时的一个小区别:

1、建立矩阵时,第一个参数为行数,第二个参数为列数。

CvMat* cvCreateMat( int rows, int cols, int type );

2、建立图像时,CvSize第一个参数为宽度,即列数;第二个参数为高度,即行数。这 个和CvMat矩阵正好相反。

IplImage* cvCreateImage(CvSize size, int depth, int channels );

CvSize cvSize( int width, int height );

 

IplImage内部buffer每行是按4字节对齐的,CvMat没有这个限制

 

补充:

A.BYTE*-> IplImage*

img= cvCreateImageHeader(cvSize(width,height),depth,channels);

cvSetData(img,data,step);

//首先由cvCreateImageHeader()创建IplImage图像头,制定图像的尺寸,深度和通道数;

//然后由cvSetData()根据BYTE*图像数据指针设置IplImage图像头的数据数据,

//其中step指定该IplImage图像每行占的字节数,对于1通道的IPL_DEPTH_8U图像,step可以等于width


相关文章推荐

CvArr、Mat、CvMat、IplImage、BYTE转换

一、Mat类型:矩阵类型,Matrix。     在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。     Mat有3个重要的方法:  ...

CvMat , Mat和IplImage之间的转化和拷贝

本文讲述CvMat , Mat和IplImage之间的转化和拷贝

IplImage, CvMat, Mat 的关系(转载)

转自:http://www.cnblogs.com/summerRQ/articles/2406109.html opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImag...

OpenCV中矩阵类详解之三:CvMat,Mat和IplImage之间的转化和拷贝

Mat的优势是Mat自动内存管理,不需要显式释放(当然也可以手动调用release()方法强制Mat矩阵数据释放) CvMat则需要调用cvReleaseMat(&cvmat)来释放 //CvMa...

CvArr、Mat、CvMat、IplImage、BYTE转换

出处:http://blog.csdn.net/wuxiaoyao12/article/details/7305848 一、Mat类型:矩阵类型,Matrix。     在openCV中,...

IplImage, CvMat, Mat 的关系和相互转换

IplImage, CvMat, Mat 的关系和相互转换

CvArr、Mat、CvMat、IplImage、BYTE转换(总结而来)

一、Mat类型:矩阵类型,Matrix。     在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。    Mat有3个重要的方法:   ...

IplImage, CvMat, Mat 的关系和相互转换(转)

opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。...

IplImage\Mat\CvMat像素处理

opencv中三种基本的矩阵结构,IplImage和Mat用于读取图像,CvMat用于矩阵运算,下面总结其用法,可能总结不全,敬请谅解。1 、IplImage对像素处理 1. 创建一副单通道字节性...

CvArr、Mat、CvMat、IplImage、BYTE转换

一、Mat类型:矩阵类型,Matrix。     在OpenCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。    Mat有3个重要的方法:   ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)