sklearn pipeline

原创 2017年10月12日 20:19:33

管道:pipeline = Pipeline([('tfidf', TfidfVectorizer(ngram_range=(1, 3), analyzer='char', min_df=2, max_df=0.85)), ('lrc', OneVsRestClassifier(LogisticRegression( solver='liblinear'))])

参数传递:

param_grid = {'lrc__estimator__C':C ,'lrc__estimator__max_iter':max_iter}

第一种为正常传递,在模型名和参数之间用双下划线连接,第二种为模型嵌套,通过estimator进行连接,用双下划线连接。

版权声明:本文为博主原创文章,未经博主允许不得转载。

sklearn Pipeline使用

简介Pipeline按顺序构建一系列转换和一个模型,最后的一步是模型。Pipeline中间的步骤必须是转换过程,它们必须包含fit和transform方法。最后一步模型只要有fit方法。Pipelin...
  • SA14023053
  • SA14023053
  • 2016年07月31日 17:03
  • 2571

sklearn 中的 Pipeline 机制

from sklearn.pipeline import Pipeline管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。管道机制实现了对每一个步骤的流式化封装...
  • lanchunhui
  • lanchunhui
  • 2016年01月15日 09:28
  • 13794

python︱sklearn一些小技巧的记录(pipeline...)

sklearn里面包含内容太多,所以一些实用小技巧还是挺好用的。1、LabelEncoder简单来说 LabelEncoder 是对不连续的数字或者文本进行编号from sklearn.preproc...
  • sinat_26917383
  • sinat_26917383
  • 2017年09月09日 21:01
  • 1291

sklearn官方文档学习笔记 管道和特征联合(Pipeline and FeatureUnion):组合估计器

sklearn官方文档学习笔记 管道和特征联合:组合估计器Pipeline and FeatureUnion: combining estimators管道:链接估计器from sklearn....
  • yisuoyanyv
  • yisuoyanyv
  • 2017年07月01日 16:18
  • 947

sklearn.pipeline.Pipeline类的用法

这一篇我会总结sklearn.pipeline.Pipeline。 1、sklearn.pipeline.Pipeline类 先给出官方的文档链接:http://scikit-learn.org/st...
  • LULEI1217
  • LULEI1217
  • 2015年11月02日 10:13
  • 11716

sklearn学习笔记3——pipeline

pipeline为方便数据处理,提供了两种模式:串行化和并行化 1.串行化,通过Pipeline类实现 通过steps参数,设定数据处理流程。格式为('key','value'),key是自己为这...
  • wateryouyo
  • wateryouyo
  • 2016年12月28日 16:24
  • 1772

sklearn中的Pipline(流水线学习器)

简介管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。管道机制(也有人翻译为流水线学习器?这样翻译可能更有利于后面内容的理解)在机器学...
  • FontThrone
  • FontThrone
  • 2017年10月14日 14:37
  • 628

【Scikit-Learn 中文文档】Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器 - 数据集转换 - 用户指南 | ApacheCN

4.1. Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器 4.1.1. Pipeline: 链式评估器 Pipeline 可以把多个评估器链接成一个。这个是很有用的...
  • u012185296
  • u012185296
  • 2017年11月29日 12:11
  • 237

sklearn学习——SVM例程总结(PCA+Pipline+cv+GridSearch)

Introduction 其实对于SVM调节超参数不需要这么复杂,因为gamma可能更重要一点,固定C=1,手动调节gamma即可。此外,sklearn的网格搜索极其的慢,下面的代码出来结果至少要半个...
  • sqiu_11
  • sqiu_11
  • 2017年07月26日 22:19
  • 555

scikit-learn:0.4 使用“Pipeline”统一vectorizer => transformer => classifier、网格搜索调参

http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 1、使用“Pipeline”...
  • mmc2015
  • mmc2015
  • 2015年07月13日 08:37
  • 1821
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:sklearn pipeline
举报原因:
原因补充:

(最多只允许输入30个字)