关闭

51nod 最长单增子序列 dp+(STL函数)二分

标签: dp 51nodstl
113人阅读 评论(0) 收藏 举报
分类:

刚刚学习dp不久,然后遇到了这个题,初步开始直接使用dp虽然测试结果在gcc可以通过,可是没有通过51nod上面的全部测试点,自己开始写的代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 0x3f3f3f3f 

using namespace std;
int main()
{
	int i,j,n;
	int a[50050],f[50050]={0};
	scanf("%d",&n);
	for(i=1;i<=n;i++)    scanf("%d",&a[i]);
	a[0]=-inf;
	for(i=1;i<=n;i++)
	{
		for(j=0;j<=i-1;j++)
		{
			if(a[j]<a[i]) 
			{
			f[i]=max(f[i],f[j]+1);
			}
		}
	}
	printf("%d",f[n]);
	return 0;
}
然后就搜了一下题解,刚开始看到有很多不理解的地方,感觉代码很短却很难理解,先给大家看一下代码然后做一下详细解释:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int num[50000+11];
int num2[50000+11];
int main()
{
	int n;
	scanf("%d",&n);
	fill(num2,num2+n+10,inf);
	num2[0]=-inf;
	for(int i=1;i<=n;++i)
		scanf("%d",&num[i]);
	int ans=1;
	for(int i=1;i<=n;++i)
	{
		int pos=upper_bound(num2,num2+n+10,num[i])-num2;
		num2[pos]=num[i];
		if(pos>ans)
			ans=pos;
	}
	/*for(int i=1;i<=ans;++i)
		printf("%d ",num2[i]);
	printf("\n");*/ 
	printf("%d\n",ans);
	return 0;
}

首先这个题最重要的是用到了STL函数库的lower_bound 和upper_bound算法,这个算法就是二分法,ForwardIter lower_bound(ForwardIter first, ForwardIter last,const _Tp& val)算法返回一个非递减序列[first, last)中的第一个大于等于值val的位置。

     ForwardIter upper_bound(ForwardIter first, ForwardIter last, const _Tp& val)算法返回一个非递减序列[first, last)中第一个大于val的位置。  lower_bound和upper_bound如下图所示:

 

举例如下:

一个数组number序列为:4,10,11,30,69,70,96,100.设要插入数字3,9,111.pos为要插入的位置的下标

pos = lower_bound( number, number + 8, 3) - number,pos = 0.即number数组的下标为0的位置。

pos = lower_bound( number, number + 8, 9) - number, pos = 1,即number数组的下标为1的位置(即10所在的位置)。

pos = lower_bound( number, number + 8, 111) - number, pos = 8,即number数组的下标为8的位置(但下标上限为7,所以返回最后一个元素的下一个元素)。

所以,要记住:函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置。如果所有元素都小于val,则返回last的位置,且last的位置是越界的!!~

返回查找元素的第一个可安插位置,也就是“元素值>=查找值”的第一个元素的位置。


下面再提一点,就是关于无穷大的说明:0x3f3f3f3f作为编码中无穷大的设定。另外有一点如果将一个数组全部初始化为无穷大,有三种方法,第一种就是写一个数组定义,第二种是STL函数用full(start,end,0x3f3f3f3f),第三种就是memset函数,memeset函数本来是按字节操作的,它能够对数组清零是因为0的每个字节都是0,注意这里就说到这个函数不能让一个数组都赋值为1或者其他数,但是0x3f3f3f3f的每个字节都是0x3f!所以要把一段内存全部置为无穷大,我们只需要memset(a,0x3f,sizeof(a))。


所以回归题中,题中首先把标记数组全部置为无穷大,然后把第一个数置为无穷小,这样把要输入的序列一个一个往进去输入,返回大于val的第一个元素位置,每一个存在num2[]数组中,ans代表长度,每次比较一下大小,最后输出就可以了。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:20172次
    • 积分:880
    • 等级:
    • 排名:千里之外
    • 原创:68篇
    • 转载:8篇
    • 译文:0篇
    • 评论:12条
    文章分类
    最新评论