[POJ 3734] Blocks (矩阵快速幂、组合数学)

本文探讨了一道经典的编程竞赛问题,即计算特定条件下不同砖块染色方案的数量。问题要求砖块总数为N,每块砖可涂四种颜色之一,但红色和绿色砖的数量必须为偶数。文章提供了两种解决方案:一种基于动态规划和矩阵快速幂的方法;另一种则是通过组合数学直接计算答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Blocks
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3997 Accepted: 1775

Description

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

Source


题目大意:
有一排砖,数量为N。现要将砖全部染上色,有红、蓝、绿、黄四种颜色。要求被染成红色和绿色的砖块数量必须为偶数,问一共有多少种染色方案。(由于答案较大,模10007)

解题思路:
这道题有两种思路,一个是采用dp的思想,然后转化为矩阵。另一个是组合数学的思想。
dp:
用dp[N][4]来表示N块砖块的染色情况,一共有四种状态。
1.  dp[N][0] :表示N块中红色绿色的数量均为偶数。
2.  dp[N][1] :表示N块中红色为偶数,绿色为奇数。
3. dp[N][2] :表示N块中红色为奇数,绿色为偶数。
4. dp[N][3] :表示N块中红色绿色的数量均为奇数。
而状态转移方程为:
dp[N+1][0] = 2 * dp[N][0] + 1 * dp[N][1] + 1 * dp[N][2] + 0 * dp[N][3]
dp[N+1][1] = 1 * dp[N][0] + 2 * dp[N][1] + 0 * dp[N][2] + 1 * dp[N][3]
dp[N+1][2] = 1 * dp[N][0] + 0 * dp[N][1] + 2 * dp[N][2] + 1 * dp[N][3]
dp[N+1][3] = 0 * dp[N][0] + 1 * dp[N][1] + 1 * dp[N][2] + 2 * dp[N][3]

上述的转移方程可以转化为矩阵:
|2 1 1 0|
|1 2 0 1|
|1 0 2 1|
|0 1 1 2|

代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define For(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
using namespace std;
const int maxn = 5;
const int maxm = 5;
const int mod = 10007;
struct Matrix {
    int n, m;
    ll a[maxn][maxm];
    void clear() {
        n = m = 0;
        memset(a, 0, sizeof(a));
    }
    Matrix operator * (const Matrix &b) const {
        Matrix tmp;
        tmp.clear();
        tmp.n = n; tmp.m = b.m;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) {
                if (!a[i][j]) continue;  //稀疏矩阵乘法优化
                for (int k = 0; k < b.m; k++) {
                    tmp.a[i][k] += a[i][j] * b.a[j][k];
                    tmp.a[i][k] %= mod;
                }
            }
        return tmp;
    }
};
int n;
Matrix Matrix_pow(Matrix A, int k) {
    Matrix res;
    res.clear();
    res.n = res.m = 4;
    for (int i = 0; i < 4; i++) res.a[i][i] = 1;
    while(k) {
        if (k & 1) res = res * A;
        k >>= 1;
        A = A * A;
    }
    return res;
}
int main () {
    int t;
    scanf("%d", &t);
    Matrix A;
    A.clear();
    A.n = A.m = 4;
    A.a[0][0] = 2; A.a[0][1] = 1; A.a[0][2] = 1; A.a[0][3] = 0;
    A.a[1][0] = 1; A.a[1][1] = 2; A.a[1][2] = 0; A.a[1][3] = 1;
    A.a[2][0] = 1; A.a[2][1] = 0; A.a[2][2] = 2; A.a[2][3] = 1;
    A.a[3][0] = 0; A.a[3][1] = 1; A.a[3][2] = 1; A.a[3][3] = 2;
    while(t--) {
        scanf("%d", &n);
        Matrix res = Matrix_pow(A, n);
        printf("%d\n", res.a[0][0]);
    }
    return 0;
}

组合数学:
如果没有限制,一共有4 ^ n 次。现在考虑有 k 块被染为红色或绿色,且在k块中,一定有红色或绿色或两者均为奇数的情况。将这些情况减去,即是想要的答案。(1<= k <= n)
从n块中选择k块,为c(n, k)。 而从k块中选择不符合的情况染色,需要对k进行奇偶讨论。
如果k为奇数,红色和绿色的数量为一奇一偶:2 * (c(k, 1) +  c(k, 3) + c(k, 5) +……)* c(n, k) * 2^(n - k)   (其中要乘以2,是因为可以分别选择红、绿色为奇数)
如果k为偶数,红色和绿色的数量全部为奇数:(c(k, 1) + c(k, 3) + c(k, 5) +……)* c(n, k) * 2^(n - k) (这里不需要乘以2)
而 c(k, 1) + c(k, 3) + c(k, 5) +…… = 2^(k - 1)
所以,最后的表达式为:
4^n - 2^n*c(n, 1) - 2^(n - 1)*c(n, 2) - 2^n*c(n, 3) - 2^(n-1)*c(n, 4)-…… = 4^n - 2^n*2^(n-1) - 2^(n-1)*(2^(n-1)-1) = 4^(n-1) + 2^(n-1)

代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define For(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
using namespace std;
const int mod = 10007;
int multi_pow(int a, int k, int mod) {
    int ans = 1;
    while(k) {
        if (k & 1) ans = (ans * a) % mod;
        k >>= 1;
        a = (a * a) % mod;
    }
    return ans;
}
int main () {
    int t, n;
    scanf("%d", &t);
    while(t--) {
        scanf("%d", &n);
        int ans = multi_pow(2, n - 1, mod);
        ans = (ans * ans) % mod + ans;
        printf("%d\n", ans % mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值