LRU Cache

原创 2016年05月31日 10:32:20

当年oracle面试时,ravi就反复问我们这道题,当时竟然不知这是一道可以准备的高频题,当然最重要的是当时只是限于用queue和map去做了,没有想到用双向循环列表。虽然最后过了,但心中一直抱憾。今天我们终于要面对这道题,觉得这道题如果想到了用双向循环列表和map就没有技术难度了,剩下的只是对lru的理解,和链表操作的基本功。于是在我们的code中,这两点都犯了错误,尤其是lru的理解,第4个错误是我们看了答案才找到的。。。

常温故知新,想想错在哪里了

public class Solution {

    private class Node {
        Node prev;
        Node next;
        int key;
        int value;
        public Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private Node head = new Node(-1, -1);
    private Node tail = new Node(-1, -1);
    private Map<Integer, Node> map = new HashMap<>();
    private int capacity = 0;

    // @param capacity, an integer
    public Solution(int capacity) {
        // write your code here
        head.prev = tail;
        tail.next = head;
        ////1
        head.next = tail;
        tail.prev = head;
        ////1
        this.capacity = capacity;
    }

    // @return an integer
    public int get(int key) {
        // write your code here
        if (!map.containsKey(key)) {
            return -1;            
        }
        Node temp = map.get(key);
        temp.next.prev = temp.prev;
        temp.prev.next = temp.next;
        
        moveAfterHead(temp);
        return temp.value;
    }

    // @param key, an integer
    // @param value, an integer
    // @return nothing
    public void set(int key, int value) {
        // write your code here
        //4 if (map.containsKey(key)) {
        if (get(key) != -1) {
            ////3
            Node temp = map.get(key);
            temp.value = value;
            ////3
            return;
        }
        if (map.size() == capacity) {
            Node temp = tail.prev;
            map.remove(temp.key);
            tail.prev = temp.prev;
            temp.prev.next = tail;
        }
        
        Node newNode = new Node(key, value);
        map.put(key, newNode);
        moveAfterHead(newNode);
    }
    
    private void moveAfterHead(Node node) {
        node.next = head.next;
        head.next.prev = node;
        node.prev = head;
        //2 head.next = node.next;
        head.next = node;
    }
}


Lru Cache java代码

  • 2017年12月04日 17:45
  • 15KB
  • 下载

如何实现 LRU Cache?

http://www.cs.uml.edu/~jlu1/doc/codes/lruCache.html

java如何实现一个LRU Cache

如何设计实现一个LRU Cache? 系统 目录 1. 什么是LRU Cache? 2.实现思路 1. 什么是LRU Cach...

设计并实现一个LRU Cache

一、什么是Cache1 概念Cache,即高速缓存,是介于CPU和内存之间的高速小容量存储器。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近CPU的...

基于文件页的 LRU Cache:磁盘缓存实现

基于文件页的 LRU Cache:磁盘缓存实现1. 功能需求本文链接:http://blog.csdn.net/quzhongxin/article/details/46700787在服务器实现过程中...

使用C++实现一个LRU cache

什么是LRU Cache LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM,...

LRU Cache的简单c++实现

什么是 LRU LRU Cache是一个Cache的置换算法,含义是“最近最少使用”,把满足“最近最少使用”的数据从Cache中剔除出去,并且保证Cache中第一个数据是最近刚刚访问的,因为这样的数...
  • ygrx
  • ygrx
  • 2013年09月05日 09:17
  • 7792

LRU Cache算法实现(leetcode)

题意实现一个LRU cache类,使得在我们需要获取一个key的值时,如果cache中有,那么直接返回值,否则就返回-1;同时我们还可以设置一个cache的值,这个主要是在我们出现cache miss...

LRU Cache的简单实现

Cache这个东西可以说无处不在,处理器中的TLB,Linux系统中的高速页缓存,还有很多人熟知的开源软件memcached,都是cache的一种实现。LRU是Least Recently Used的...

设计并实现一个LRU Cache (java)

什么是Cache 概念 Cache,即高速缓存,是介于CPU和内存之间的高速小容量存储器。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近CPU的频率...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LRU Cache
举报原因:
原因补充:

(最多只允许输入30个字)