关闭

嵌入式 ADPCM压缩算法

630人阅读 评论(0) 收藏 举报
分类:
ADPCM(Adaptive Differential Pulse Code Modulation),是一种针对 16bits(或8bits或者更高) 声音波形数据的一种有损压缩算法,它将声音流中每次采样的 16bit 数据以 4bit 存储,所以压缩比1:4. 而且压缩/解压缩算法非常简单,所以是一种低空间消耗,高质量高效率声音获得的好途径。保存声音的数据文件后缀名为 .AUD的大多用ADPCM 压缩。
  ADPCM主要是针对连续的波形数据的,保存的是波形的变化情况,以达到描述整个波形的目的,由于它的编码和解码的过程却很简洁,列在后面,相信大家能够看懂。
  8bits采样的声音人耳是可以勉强接受的,而 16bit 采样的声音可以算是高音质了。ADPCM 算法却可以将每次采样得到的16bit 数据压缩到 4bit。需要注意的是,如果要压缩/解压缩得是立体声信号,采样时,声音信号是放在一起的,需要将两个声道分别处理。
ADPCM 压缩过程
  首先我们认为声音信号都是从零开始的,那么需要初始化两个变量
    int index=0,prev_sample=0;
  下面的循环将依次处理声音数据流,注意其中的 getnextsample() 应该得到一个 16bit 的采样数据,而outputdata() 可以将计算出来的数据保存起来,程序中用到的 step_table[],index_adjust[]附在后面:
    int index=0,prev_sample:=0;
    while (还有数据要处理)
    {
      cur_sample=getnextsample();        //得到当前的采样数据
      delta=cur_sample-prev_sample;       //计算出和上一个的增量
      if (delta<0) delta=-delta,sb=8;      //取绝对值
      else sb = 0 ;               // sb 保存的是符号位
      code = 4*delta / step_table[index];    // 根据 steptable[]得到一个0-7 的值
      if (code>7) code=7;            //它描述了声音强度的变化量
      index += index_adjust[code] ;       // 根据声音强度调整下次取steptable的序号
      if (index<0) index=0;           //便于下次得到更精确的变化量的描述
      else if (index>88) index=88;
      prev_sample=cur_sample;
      outputode(code|sb);            // 加上符号位保存起来
    }
   
ADPCM 解压缩过程
  接压缩实际是压缩的一个逆过程,同样其中的 getnextcode() 应该得到一个编码,,而 outputsample()可以将解码出来的声音信号保存起来。这段代码同样使用了同一个的 setp_table[] 和 index_adjust()附在后面:
    int index=0,cur_sample=0;
    while (还有数据要处理) 
    {
        code=getnextcode();                       //得到下一个数据
        if ((code & 8) != 0) sb=1 else sb=0;
        code&=7;                            // 将 code分离为数据和符号
        delta =(step_table[index]*code)/4+step_table[index]/8;     //后面加的一项是为了减少误差
        if (sb==1) delta=-delta;
        cur_sample+=delta;                        //计算出当前的波形数据
        if (cur_sample>32767)output_sample(32767);
        else if (cur_sample<-32768)output_sample(-32768);
        else output_sample(cur_sample);
        index+=index_adjust[code];
        if (index<0) index=0;
        if (index>88) index=88;
     }
附表
     int index_adjust[8] = {-1,-1,-1,-1,2,4,6,8};
     int step_table[89] = 
     {
       7,8,9,10,11,12,13,14,16,17,19,21,23,25,28,31,34,37,41,45,
       50,55,60,66,73,80,88,97,107,118,130,143,157,173,190,209,230,253,279,307,337,371,
       408,449,494,544,598,658,724,796,876,963,1060,1166,1282,1411,1552,1707,1878,2066,
       2272,2499,2749,3024,3327,3660,4026,4428,4871,5358,5894,6484,7132,7845,8630,9493,
       10442,11487,12635,13899,15289,16818,18500,20350,22385,24623,27086,29794,32767
     }
0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:973486次
    • 积分:17574
    • 等级:
    • 排名:第541名
    • 原创:741篇
    • 转载:522篇
    • 译文:0篇
    • 评论:105条
    最新评论