最大子序列求解及分治算法的一些例子

题目大概意思是:在一个乱序的数列中,找出其相加之和最大的子列。例如在[-2,1,-3,4,-1,2,1,-5,4]子列为[4,-1,2,1]有最大和为6。

我的解题思路就是做一个历遍,首先从数列第一位与后面的各个位相加,一直加到末尾,找出第一位数中最大和子列的最后一位数;然后再从第二位数往后加起来,以此类推。找到数组中的某一位数相加到它之后的某位数为最大。

#include <iostream>
using namespace std;

int MaxSub(const int *a,int n,int *start,int *end)
{
	int cur_sum = 0;
	int max_sum = 0;
	int i = 0;
	int j = 0;
	for(i=0;i < n;i++){
	    cur_sum=0;
		for(j=i;j < n;j++){
			cur_sum += a[j];
			if(cur_sum>max_sum){
				max_sum = cur_sum;
				*start = i;
				*end = j;         //仅当max_sum发生变化才更改,以此识别最大和子列的头和结尾。
			}
		}
	}
	return max_sum;
} 

int main(){
	int n;
	cin>>n;
	int a[n];
	int start_index,end_index;
	for(int i = 0;i<n;i++){
		cin>>a[i];
	}
	int max = MaxSub(a,n,&start_index,&end_index);
	cout<<"contiguous subarray"<<"[";
	for(int i=start_index;i<end_index;i++){
		cout<<a[i]<<",";
	}
	cout<<a[end_index]<<"]"<<"has the largest sum = ";
	cout<<max<<endl;
	return 0;
	
}
这种解决方法的复杂度是O(n^2),遍历的次数是n*n+(n-1)*(n-1)+...+2*2+1*1。但是我不知道这个算法是否使用到了分治算法的思想。然后我上网找了一些分治算法的例子。

采用的是“分治“(divide-and-conquer)策略。思想是把问题分成两个大致相当的子问题,然后递归地对他们求解,这是”分“。”治“阶段将两个子问题的解合并到一起,可能再做一些附加的工作,最终得到整个问题的解。

算法复杂度为O(n)的算法

如果a[i]为负数,那么它不可能代表最优序列的起点,因为任何包含a[i]的作为起点的子序列都可以通过用a[i+1]作为起点而得到改进。同理,任何小于零的子序列不可能是最优子序列的前缀。

int MaxSubSeqSum3(const int *A, int N, int *start, int *end)  
{  
    int i = 0;  
    int j = 0;  
    int cur_sum = 0;  
    int Max_sum = 0;  
  
    for(i = 0; i < N; i ++)  
    {  
        cur_sum += A[i];  
        if(cur_sum > Max_sum)  
        {  
            Max_sum = cur_sum;  
                *end   = i;  
        }  
  
        else if(cur_sum < 0)  
        {  
            cur_sum = 0;  
            j = i + 1;  
        }  
  
        if(j <= *end)  
            *start = j;  
  
    }  
  
    return Max_sum;  
}  
其实看了之后还是不太懂— —||,怎么分,怎么治?求解答

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值