【tensorflow1.0学习笔记007】实现简单的CNN卷积神经网络

本节主要讲解简单的CNN实现

1、函数

卷积函数

tf.nn.conv2d(x,W,strides,padding,name)

tf.nn.conv2d是Tensorflow的2维卷积函数:

x是输入,4维;

W是卷积的参数,也就是卷积核,

eg:当W=[5, 5, 1, 32],前两个参数为卷积核的大小;第三个参数为channel的个数,也就是上一层的输出,由于这里是灰度图像,所以为1,第四个参数为卷积核的数量;

strides是卷积核的移动步长,若strides=[1, 1, 1, 1],都是1代表不遗漏地划过图片的每一点;

padding是边界地处理方式,这里SAME代表给边界加上padding让卷积的输出和输入保持同样(SAME)的尺寸;

name是卷积层的名字,是可选项。

池化函数

tf.nn.max_pool(x,ksize,strides,padding,name)

tf.nn.max_pool是Tensorflow的最大池化函数,当然还有平均池化函数,最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征

x是输入,4维;

ksize是池化的大小,

eg:当ksize=[1, 2, 2, 1],第一个和最后一个参数固定设定为1,第二个和第三个为自定义参数,这里的意思就是将一个2*2的像素块降为1*1的像素。

strides是池化的步长,

eg:当strides=[1, 2, 2, 1],第一个参数和最后一个参数固定设定为1,第二个和第三个参数自定义参数,这里的意思就是横竖两个方向以2为步长。如果步长还是1,那么会得到一个尺寸不变的图片拍;

padding与卷积函数的padding的一样。

 变化函数

由于卷积神经网络会利用到空间结构信息,所以需要将1D的输入向量转化为2D的图片结构,

tf.reshape(x,shape)

x为输入,

shape为转后的形式。

eg:tf.reshape(x, [-1,28,28,1]),意思就是将1D向量转为2D的图片格式,即从1*784转化为原始的28*28的结构。同时由于只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后一个1代表颜色通道数量。

求和函数

tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)

计算输入tensor元素的和,或者安照reduction_indices指定的轴进行求和
# ‘x’ is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

系列比较与索引

返回input最大值的索引index

tf.argmax(input, dimension, name=None)

2、关于卷积神经网络

卷积神经网络的要点就是局部连接、权值共享和池化层中的降采样。其中,局部连接和权值共享降低 参数量,使训练复杂度大大下降,并减轻过拟合。同时权值共享还赋予了卷积网络对平移的容忍性,而池化层降采样则进一步降低了输出参数量,并赋予模型对轻度形变的容忍性,提高了模型的泛化能力。

CNN训练的模型对缩放、平移、旋转等畸变具有不变形,有很强的泛化性。

神经认知包含两类神经元:

1.抽取特征S-cell:卷积操作

2.抗形变C-cell:激活函数,最大池化等操作


权值共享:降低模型复杂度,减轻过拟合并降低计算量。

最大池化:保留最显著的特征,并提升模型的畸变容忍能力。

虽然需要训练的参数量下降了,但是隐含节点的数量并不会下降,隐含节点的数量只跟卷积的步长有关。


3、代码部分

实例代码:

# coding=utf-8

import tensorflow as tf

# import data
from tensorflow.exaemples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 卷积神经网络会有很多的权重和偏置需要创建
# 定义初始化函数以便重复使用
def weigth_variable(shape):
    # 给权重制造一些随机的噪声来打破完全对称,例如这里截断的正态分布,标准差为0.1
    inital = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(inital)

def bias_variable(shape):
    # 由于使用Relu,也给偏置增加一些小的正值(0.1)用来避免死亡节点(dead neurous)
    inital = tf.constant(0.1, tf.float32, shape)
    return tf.Variable(inital)

# 卷积层和池化层也是接下来重复使用的
# 定义卷积层和池化层
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2X2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 在正式设计卷积神经网络之前,先定义输入placeholder,x是特征,y是真实的label
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义第一个卷积层
# 先使用前面写好的函数进行参数初始化,包括weigth和bias,
# 接着使用conv2d函数进行卷积操作,并加上偏置,
# 然后在使用ReLu激活函数进行非线性处理,
# 最后,使用最大池化函数对卷积的输出结果进行池化操作
W_conv1 = weigth_variable([5, 5, 1, 32])  # patch 5x5, in size 1, out size 32
# 矩阵用大写字母开头,便于自己下面区分(这只是个人建议)
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(tf.conv2d(x_image, W_conv1) + b_conv1)  # output size 28x28x32
h_pool1 = tf.max_pool_2X2(h_conv1)  # output size 14x14x32

# 定义第二层卷积层
# 步骤如上一层,只是参数有所改变而已
W_conv2 = weigth_variable([5, 5, 32, 64])  # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(tf.conv2d(h_pool1, W_conv2) + b_conv2)  # output size 14x14x64
h_pool2 = tf.max_pool_2X2(h_conv2)   # output size 7x7x64

# 全连接层
W_fc1 = weigth_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,增加一个dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 将dropout层的输出连接到一个softmax层,得到最后的概率输出
W_fc2 = weigth_variable([1024, 10])
b_fc2 = bias_variable([10])
pre = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 最后定义损失函数为cross entropy,和之前一样,但是最后的优化器使用Adam,并给予一个比较小的学习率1e-4
cross_entropy = tf.reduce_mean(tf.reduce_sum(y*tf.log(pre), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  # 使用的优化方法,以及追求的目标

# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(pre, 1))
accuray = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# train,开始训练
# 首先依然是初始化所有变量,设置训练是的Dropout的keep_prob比率为0.5,
# 然后使用大小为50的mini_batch,共进行20000次训练迭代,
# 参与训练的样本数量总共100万,其中每100次训练,会准确率进行一次评测时keep_prob为1,用以实时监测模型的性能
with tf.InteractiveSession() as sess:
    tf.global_variables_initializer().run()
    for i in range(20000):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy = accuray.eval(feed_dict={x: batch[0], y: batch[1], keep_prob: 1.0})
            print("step %d, training accuracy %g" % (i, train_accuracy))
        train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5})
    # 全部训练完后,在最终的测试集上进行全面的测试,得到整体分类准确率
    print("test accuracy %g" % accuray.eval(feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0}))




  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值