蒙特卡罗算法

蒙特·卡罗方法

蒙特卡洛算法即蒙特·卡罗方法。

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用 随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、 空气动力学计算)等领域应用广泛。

1概述编辑

蒙特卡罗方法又称统计模拟法、 随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的 概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。
提出:
蒙特卡罗方法于20世纪40年代美国在 第二次世界大战中研制 原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡罗方法的起源。

2基本思想编辑

当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
工作过程
蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
蒙特卡罗方法解题过程的三个主要步骤:
(1)构造或描述概率过程
对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过 程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。
(2)实现从已知概率分布抽样
构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个 概率分布是(0,1)上的均匀分布(或称矩形分布)。 随机数就是具有这种均匀分布的随机变量。 随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生 随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生 随机数,但价格昂贵,不能重复,使用不便。另一种方法是用 数学 递推公式产生。这样产生的序列,与真正的 随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种 统计检验表明,它与真正的 随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现 蒙特卡罗模拟的基本工具。
(3)建立各种估计量
一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种 估计量,相当于对 模拟实验的结果进行考察和登记,从中得到问题的解。
数学应用:
通常蒙特·卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题。对于那些由于计算过于复杂而难以得到 解析解或者根本没有解析解的问题,蒙特·卡罗方法是一种有效的求出 数值解的方法。一般蒙特·卡罗方法在数学中最常见的应用就是蒙特·卡罗积分。

3应用领域编辑

蒙特卡罗方法在 金融工程学宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算、核工程)等领域应用广泛。

4工作过程编辑

在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作:
1. 用蒙特·卡罗方法模拟某一过程时,需要产生某一概率分布的 随机变量
2. 用 统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。

5模拟计算编辑

使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的:
1. 使用随机数发生器产生一个随机的分子构型。
2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
3. 计算新的分子构型的能量。
4. 比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型 能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个 随机数。若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。 若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。 5. 如此进行 迭代计算,直至最后搜索出低于所给 能量条件的分子构型结束。

6发展运用编辑

从理论上来说,蒙特卡罗方法需要大量的实验。实验次数越多,所得到的结果才越精确。
从表中数据可以看到,一直到公元20世纪初期,尽管实验次数数以千计,利用蒙特卡罗方法所得到的圆周率∏值,还是达不到公元5世纪祖冲之的推算精度。这可能是传统 蒙特卡罗方法长期得不到推广的主要原因。
计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及。现代的 蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被 项目管理人员经常使用。
借助计算机技术,蒙特卡罗方法实现了两大优点:
一是简单,省却了繁复的数学推导和演算过程,使得一般人也能够理解和掌握
二是快速。简单和快速,是 蒙特卡罗方法在现代 项目管理中获得应用的技术基础。
蒙特卡罗方法有很强的适应性,问题的几何形状的复杂性对它的影响不大。该方法的收敛性是指 概率意义下的收敛,因此问题 维数的增加不会影响它的收敛速度,而且 存贮单元也很省,这些是用该方法处理大型复杂问题时的优势。因此,随着电子计算机的发展和科学技术问题的日趋复杂, 蒙特卡罗方法的应用也越来越广泛。它不仅较好地解决了多重积分计算、 微分方程求解、 积分方程求解、特征值计算和非线性方程组求解等高难度和复杂的数学计算问题,而且在统计物理、 核物理、真空技术、 系统科学 、 信息科学、公用事业、地质、医学, 可靠性及计算机科学等广泛的领域都得到成功的应用。
一般步骤
项目管理中蒙特卡罗模拟方法的一般步骤是:
1.对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;
2.计算机根据上述输入,利用给定的某种规则,快速实施充分大量的 随机抽样
3.对 随机抽样的数据进行必要的数学计算,求出结果
4.对求出的结果进行 统计学处理,求出最小值、最大值以及数学期望值和单位 标准偏差
5.根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线(通常是基于 正态分布的概率累积 S曲线)
6.依据累积概率曲线进行项目 风险分析
积分
非权重蒙特卡罗积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。此种方法的正确性是基于 概率论中心极限定理。当抽样点数为m时,使用此种方法所得近似解的统计误差恒为1除于根号M,不随积分 维数的改变而改变。因此当积分维度较高时,蒙特卡罗方法相对于其他数值解法更优。


来自百度百科

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值