关闭

向量知识点总结备忘(一)

标签: 图形学
201人阅读 评论(0) 收藏 举报
分类:
  1. 点与向量
    向量 = 点 - 点
  2. 向量的线性组合
    m个向量v1, v2, …, vm的线性组合如下: w = a1v1 + a2v2 + … + amvm
    其中a1,a2,…,am是标量
  3. 向量的仿射组合
    如果向量线性组合的系数之和等于1, 那么它就是仿射组合,即系数满足:
    a1 + a2 + a3 + … + am = 1
  4. 向量的凸组合
    如果向量满足仿射组合,且系数a1,a2,…,am都大于等于0,则他是凸组合
  5. 向量的大小和归一化
    w = (w1,w2,w3,w4,…,wm)
    |w| = 向量各分量平方和的平方根
    归一化: w/|w|
  6. 点积
    w●v = ∑(i=1…m)w[i]v[i]
  7. 点积的性质
    1) 对称性 w●v = v●w
    2) 线性 (a + c) ● b = a●b + c●b
    3) 同质性 (sa)●b = s(a●b)
    4) |b|的平方 = b●b
  8. 向量的夹角
    cos(θ) = (b●c) / (|b||c|)
  9. 向量b,c正交 <===> b●c = 0
  10. 二维正交向量
    定义:给定向量a = (ax, ay)
    a的逆时针正交向量为: (-ay, ax)
  11. 点到直线的距离
    利用正交向量和点积计算
    参考计算机图形学(OpenGL版): P132 4.3.5
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2862次
    • 积分:147
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章分类
    最新评论