【HDU5565 BestCoder Round 62 (div1)C】【STL or 二分答案 or 计数排序】Clarke and baton n个人减肥m次求最后异或值

原创 2015年11月18日 10:38:56

【HDU5565 BestCoder Round 62 (div1)C】【优先队列做法】Clarke and baton n个人减肥m次求最后异或值

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e7+10,M=0,Z=1e9+7,G=78125,ms63=1061109567;
int casenum,casei;
int a[N];
int n,m;
long long seed;
int rand(int l, int r) 
{
	seed=seed*G%Z;
	return l+seed%(r-l+1);
}
struct node
{
	int v,o;
	node(){}
	node(int v_,int o_){v=v_;o=o_;}
	bool operator < (const node& b)const
	{
		if(v!=b.v)return v<b.v;
		return o>b.o;
	}
};
priority_queue<node>q;
int main()
{
	scanf("%d",&casenum);
	for(casei=1;casei<=casenum;casei++)
	{
		scanf("%d%d%lld",&n,&m,&seed);
		int sum=rand(m,10000000);	
		
		//天啊噜,这个优化是在是太BT了,果然有时候猜极端数据特判掉是AC的好办法啊!
		if(m==sum)
		{
			int ans=0;
			for(int i=1;i<=n;i++)ans^=i;
			printf("%d\n",ans);
			continue;
		}

		for(int i=1;i<=n;i++) 
		{
			a[i]=rand(0,sum/(n-i+1));
			sum-=a[i];
		}
		a[rand(1,n)]+=sum;	
		for(int i=1;i<=n;i++)q.push(node(a[i],i));
		while(m--)
		{
			int v=q.top().v;
			int o=q.top().o;
			q.pop();
			q.push(node(v-1,o));
		}
		int ans=0;
		while(!q.empty())
		{
			ans^=(q.top().v+q.top().o);
			q.pop();
		}
		printf("%d\n",ans);
	}
	return 0;
}
/*
【trick&&吐槽】
1,STL常数巨大,有可能卡常数的情况,同复杂度尽量选用替代STL的做法
2,极端数据的特判可以极大实现代码加速!不论是multiset还是priority_queue,怎么都可以在极小的时间复杂度内AC

【题意】
T(10)组数据,6s时限
对于每组数据,给你一个种子,并用种子生成n(1e7)个数a[]。
这n个数之和为sum,sum也是由种子生成的,sum的值在[m,1e7]之间,
m是我们要对这n个数做减法的总次数。
具体上讲,是我们一共做m次减法,每次选取数值最小的那个做减法;
如果有多个数数值相同,那么我们选取编号最小的那个。
在所有减法操作结束之后,让你输出所有i∈[1,n]条件下的(a[i]+i)的异或和

【类型】
STL or 二分答案 or 计数排序

【分析】
方法一:STL
用STL的multiset或priority_queue维护这个操作。
虽然理论上的复杂度为O(nlogn)但是常数巨大于是TLE

方法二:二分答案
我们可以二分做完所有减法条件后的最大值,然后检测其合法性。
然后基于这个做一次线性扫描即可,时间复杂度为O(nlogn)

方法三:快排
可以通过快排来维护做完所有减法条件后的最大值。
时间复杂度也是O(nlogn)

方法四:计数排序
我们基于快排的思路,把实现改变为计数排序,时间复杂度就变为了稳定的O(n)


【时间复杂度&&优化】
200ms AC

*/


【HDU5565 BestCoder Round 62 (div1)C】【二分答案做法】Clarke and baton n个人减肥m次求最后异或值

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e7+10,M=0,Z=1e9+7,G=78125,ms63=1061109567;
int casenum,casei;
int a[N];
int n,m;
long long seed;
int rand(int l, int r) 
{
	seed=seed*G%Z;
	return l+seed%(r-l+1);
}
bool check(int v)
{
	int tim=m;
	for(int i=1;i<=n;i++)if(a[i]>v)
	{
		tim-=a[i]-v;
		if(tim<0)return 0;
	}
	return 1;
}
int solve(int v)
{
	int tim=m;
	for(int i=1;i<=n;i++)if(a[i]>v)
	{
		tim-=a[i]-v;
		a[i]=v;
	}
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		if(tim&&a[i]==v)
		{
			--tim;
			--a[i];
		}
		ans^=(a[i]+i);
	}
	return ans;
}
int main()
{
	scanf("%d",&casenum);
	for(casei=1;casei<=casenum;casei++)
	{
		scanf("%d%d%lld",&n,&m,&seed);
		int sum=rand(m,10000000);
			
		//天啊噜,这个优化是在是太BT了,果然有时候猜极端数据特判掉是AC的好办法啊!
		if(m==sum)
		{
			int ans=0;
			for(int i=1;i<=n;i++)ans^=i;
			printf("%d\n",ans);
			continue;
		}

		int top=0;
		for(int i=1;i<=n;i++) 
		{
			a[i]=rand(0,sum/(n-i+1));gmax(top,a[i]);
			sum-=a[i];
		}
		int p=rand(1,n);
		a[p]+=sum;gmax(top,a[p]);

		int l=0;
		int r=top;
		while(l<r)
		{
			int mid=(l+r)>>1;
			if(check(mid))r=mid;
			else l=mid+1;
		}
		printf("%d\n",solve(l));
	}
	return 0;
}
/*
【trick&&吐槽】
1,STL常数巨大,有可能卡常数的情况,同复杂度尽量选用替代STL的做法
2,极端数据的特判可以极大实现代码加速!不论是multiset还是priority_queue,怎么都可以在极小的时间复杂度内AC

【题意】
T(10)组数据,6s时限
对于每组数据,给你一个种子,并用种子生成n(1e7)个数a[]。
这n个数之和为sum,sum也是由种子生成的,sum的值在[m,1e7]之间,
m是我们要对这n个数做减法的总次数。
具体上讲,是我们一共做m次减法,每次选取数值最小的那个做减法;
如果有多个数数值相同,那么我们选取编号最小的那个。
在所有减法操作结束之后,让你输出所有i∈[1,n]条件下的(a[i]+i)的异或和

【类型】
STL or 二分答案 or 计数排序

【分析】
方法一:STL
用STL的multiset或priority_queue维护这个操作。
虽然理论上的复杂度为O(nlogn)但是常数巨大于是TLE

方法二:二分答案
我们可以二分做完所有减法条件后的最大值,然后检测其合法性。
然后基于这个做一次线性扫描即可,时间复杂度为O(nlogn)

方法三:快排
可以通过快排来维护做完所有减法条件后的最大值。
时间复杂度也是O(nlogn)

方法四:计数排序
我们基于快排的思路,把实现改变为计数排序,时间复杂度就变为了稳定的O(n)

【时间复杂度&&优化】
31ms AC
没错,不要不相信你的眼睛,我真的不是输入输出数据 噗 我就是可以31ms AC这道题!

【数据】


*/



【HDU5565 BestCoder Round 62 (div1)C】【计数排序做法】Clarke and baton n个人减肥m次求最后异或值

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e7+10,M=0,Z=1e9+7,G=78125,ms63=1061109567;
int casenum,casei;
int a[N],num[N];
int n,m;
long long seed;
int rand(int l, int r) 
{
	seed=seed*G%Z;
	return l+seed%(r-l+1);
}
int top;
int solve()
{
	int sum=0;
	for(int i=top;;--i)
	{
		sum+=num[i];
		if(m-sum<=0)
		{
			int ans=0;
			for(int j=1;j<=n;++j)
			{
				if(a[j]<i)ans^=a[j]+j;
				else if(m){ans^=i-1+j;--m;}
				else ans^=i+j;
			}
			return ans;
		}
		m-=sum;
	}
}
int main()
{
	scanf("%d",&casenum);
	for(casei=1;casei<=casenum;++casei)
	{
		scanf("%d%d%lld",&n,&m,&seed);
		int sum=rand(m,10000000);

		//天啊噜,这个优化是在是太BT了,果然有时候猜极端数据特判掉是AC的好办法啊!
		if(m==sum)
		{
			int ans=0;
			for(int i=1;i<=n;i++)ans^=i;
			printf("%d\n",ans);
			continue;
		}

		memset(num,0,(sum+2)*4);top=sum;
		for(int i=1;i<=n;++i) 
		{
			a[i]=rand(0,sum/(n-i+1));++num[a[i]];
			sum-=a[i];
		}
		int p=rand(1,n);
		--num[a[p]];
		a[p]+=sum;
		++num[a[p]];
		printf("%d\n",solve());
	}
	return 0;
}
/*
【trick&&吐槽】
1,STL常数巨大,有可能卡常数的情况,同复杂度尽量选用替代STL的做法
2,极端数据的特判可以极大实现代码加速!不论是multiset还是priority_queue,怎么都可以在极小的时间复杂度内AC

【题意】
T(10)组数据,6s时限
对于每组数据,给你一个种子,并用种子生成n(1e7)个数a[]。
这n个数之和为sum,sum也是由种子生成的,sum的值在[m,1e7]之间,
m是我们要对这n个数做减法的总次数。
具体上讲,是我们一共做m次减法,每次选取数值最小的那个做减法;
如果有多个数数值相同,那么我们选取编号最小的那个。
在所有减法操作结束之后,让你输出所有i∈[1,n]条件下的(a[i]+i)的异或和

【类型】
STL or 二分答案 or 计数排序

【分析】
方法一:STL
用STL的multiset或priority_queue维护这个操作。
虽然理论上的复杂度为O(nlogn)但是常数巨大于是TLE

方法二:二分答案
我们可以二分做完所有减法条件后的最大值,然后检测其合法性。
然后基于这个做一次线性扫描即可,时间复杂度为O(nlogn)

方法三:快排
可以通过快排来维护做完所有减法条件后的最大值。
时间复杂度也是O(nlogn)

方法四:计数排序
我们基于快排的思路,把实现改变为计数排序,时间复杂度就变为了稳定的O(n)

【时间复杂度&&优化】
100ms AC

【数据】


*/


版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^

BestCoder Round #62 (div.2)-Clarke and baton(二分搜索)

Clarke and baton    Accepts: 1    Submissions: 126  Time Limit: 12000/6000 MS (Java/Others)    Memo...
  • zsc2014030403015
  • zsc2014030403015
  • 2015年11月15日 00:38
  • 297

【codechef】n个数,多少种取法的异或值==m【二项式定理】

由于比赛还没结束所以先不放题目了。。。(转化题意:n个数,多少种取法的异或值==m ) 这道dp要写得非常小心,考虑全面。第一发超时,原因是n=10^5,所以复杂度1024000,但是又想到所有数字都...
  • cacyth
  • cacyth
  • 2015年12月09日 15:02
  • 1093

N个数选任意个使得异或和最大(高斯消元)

#include using namespace std; typedef long long LL; typedef unsigned long long ULL; const LL INF =...
  • w20810
  • w20810
  • 2015年11月07日 12:22
  • 431

华为笔试题: 求M的N次方的最后三位

描述:  正整数M 的N次方有可能是一个非常大的数字,我们只求该数字的最后三位 例1: 比如输入5和3 ,5的3次方为125,则输出为125  例2: 比如输入2和10  2的10次方为...
  • u010889616
  • u010889616
  • 2016年01月31日 17:51
  • 1012

CSU 1323 求一堆数中取出2个异或使得异或值大于某个数

1323: ZZY and his little friends Time Limit: 5 Sec  Memory Limit: 256 MB Submit: 239  Solved: 10...
  • hnust_xiehonghao
  • hnust_xiehonghao
  • 2013年10月04日 14:59
  • 3908

n个数中任意两个异或最大值

01字典树 把每一个数以二进制形式从高位到低位插入trie中,依次枚举每个数,在trie中贪心,即当前为0则向1走,为1则向0走。#include #include #define MAX(a,...
  • zjy2015302395
  • zjy2015302395
  • 2016年10月01日 11:55
  • 1128

BestCoder Round #62 (div.2) D.Clarke and baton

Clarke and baton    Accepts: 1    Submissions: 126  Time Limit: 12000/6000 MS (Java/Others)    Memo...
  • ZZ_AC
  • ZZ_AC
  • 2015年11月16日 19:27
  • 236

浅谈二分答案

二分答案,就是二分枚举答案,由于进行二分,所以复杂度log(n),比直接 for的时间更短。【问题描述】记得上学那会, Fbs同学经常会欺负萝卜同学。有一次,他出了这么一道题目,想为难一下萝卜同学。...
  • stevensonson
  • stevensonson
  • 2017年09月11日 20:29
  • 666

(转载)求1到n这n个整数间的异或值(O(1)算法)

转自http://www.cnblogs.com/flyinghearts/archive/2011/03/22/1992001.html
  • u012891242
  • u012891242
  • 2014年04月26日 12:30
  • 1339

【Codeforces Round 340 (Div 2)E】【莫队算法 真实区间思想】XOR and Favorite Number m组区间询问 问区间中多少连续段异或值为k

E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megab...
  • snowy_smile
  • snowy_smile
  • 2016年02月28日 13:06
  • 2937
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【HDU5565 BestCoder Round 62 (div1)C】【STL or 二分答案 or 计数排序】Clarke and baton n个人减肥m次求最后异或值
举报原因:
原因补充:

(最多只允许输入30个字)