【Educational Codeforces Round 1C】【计算几何-极角排序 atan2 long double】Nearest vectors 平面图上原点引出角度最小的两个

原创 2015年11月19日 10:58:06

C. Nearest vectors
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Sample test(s)
input
4
-1 0
0 -1
1 0
1 1
output
3 4
input
6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6
output
6 5


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n;
struct A
{
	int o;
	int x,y;
	long double atan2;
}a[N];
bool cmp(A a,A b)
{
	return a.atan2<b.atan2;
}
/*这组数据会使得出现两个极其接近的
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252*/
LL K(LL x){return x*x;}
void Test()
{
	A a,b,c,d;
	scanf("%d%d",&a.x,&a.y);
	scanf("%d%d",&b.x,&b.y);
	scanf("%d%d",&c.x,&c.y);
	scanf("%d%d",&d.x,&d.y);
	LL top1=K(a.x*b.x+a.y*b.y);
	LL top2=K(c.x*d.x+c.y*d.y);
	LL bot1=(LL)(a.x*a.x+a.y*a.y)*(b.x*b.x+b.y*b.y);
	LL bot2=(LL)(c.x*c.x+c.y*c.y)*(d.x*d.x+d.y*d.y);
	printf("%lld/%lld\n",top1,bot1);
	printf("%lld/%lld\n",top2,bot2);
}
void Atan2()
{
	printf("%lf\n",atan2(0,1));//0
	printf("%lf\n",atan2(1,0));//PI/2
	printf("%lf\n",atan2(0,-1));//PI
	printf("%lf\n",atan2(-1e-8,-1));//-PI
	printf("%lf\n",atan2(-1,0));//-PI/2
}
int main()
{
	//Test();
	//Atan2();
	while(~scanf("%d",&n))
	{
		for(int i=1;i<=n;i++)
		{
			a[i].o=i;
			scanf("%d%d",&a[i].x,&a[i].y);
			a[i].atan2=atan2(a[i].y,a[i].x);
		}
		sort(a+1,a+n+1,cmp);a[n+1]=a[1];
		const long double PI2=acos(-1.0)*2;
		long double Angle=PI2+0.1;
		int X,Y;
		for(int i=1;i<=n;i++)
		{
			long double angle=a[i+1].atan2-a[i].atan2;
			if(angle<0)angle+=PI2;
			if(angle<Angle)
			{
				Angle=angle;
				X=a[i].o;
				Y=a[i+1].o;
			}
		}
		printf("%d %d\n",X,Y);
	}
	return 0;
}
/*
【trick&&吐槽】
1,atan2还是很棒哒
2,long double也是吊吊哒

【题意】
平面坐标系中给你n(1e5)个点(坐标是[-10000,10000]之间的整数),代表n条从原点引出的向量。
向量长度不为0,向量不共线,让你求出夹角最小的那一对向量。

【类型】
计算几何-极角排序

【分析】
1,atan2(纵坐标y,横坐标x)可以返回一个(0,0)->(x,y)的角度哈希值——注意!纵坐标在前,横坐标在后。
atan2的自变量是任意坐标值,然而不能包括原点本身,否则会有排序出错。
atan2的因变量是(-PI,PI]之间的值

printf("%lf\n",atan2(0,1));//0
printf("%lf\n",atan2(1,0));//PI/2
printf("%lf\n",atan2(0,-1));//PI
printf("%lf\n",atan2(-1e-8,-1));//-PI
printf("%lf\n",atan2(-1,0));//-PI/2
返回这个向量相较于(1,0)的的角度差。我们可以用它直接比较角度大小关系。

2,long double还是很好用,可以用c++输出哦

3,这题更高的精度可以通过分数类实现,以下给出zimpha的大分数大小比较代码
static int cmp(LL n1,LL d1,LL n2,LL d2)
{
    if(!(n1 && n2))return n1==n2?0:n1<n2?-1:1;
    if(n1>0 ^ n2 >0)return n1<0?-1:1;
    if(n1<0) return rc(d1,-n1,d2,-n2);
    return rc(d2,n2,d1,n1);
}
static int rc(LL n1,LL d1,LL n2,LL d2)
{
    LL k1=n1/d1,k2=n2/d2;
    if(k1!=k2)return k1<k2?-1:1;
    LL r1=n1%d1,r2=n2%d2;
    if(r1&&r2) return rc(d2,r2,d1,r1);
    if(r1 && !r2)return 1;
    if(r2 && !r1)return -1;
    return 0;
}

【时间复杂度&&优化】
O(nlogn)

【数据】
4
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252

a.x*b.x+a.y*b.y=
*/


版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^ 举报

相关文章推荐

【Educational Codeforces Round 1C】【计算几何-极角排序 atan2 long double】Nearest vectors 平面图上原点引出角度最小的两个

C. Nearest vectors time limit per test 2 seconds memory limit per test 256 megabytes ...

Educational Codeforces Round 1 C Nearest vectors(极角排序)

题意: 求N≤105个从原点出发的向量中夹角最小的2个向量编号求N\le 10^5个从原点出发的向量中夹角最小的2个向量编号 分析: 显然的极角排序显然的极角排序 解释一下极角排序吧,极...
  • lwt36
  • lwt36
  • 2016-01-19 21:05
  • 183

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Educational Codeforces Round 1 C.Nearest vectors(排序)

题目大意:给一堆向量,找出角度差最小的两个向量 大致思路:按照角度递增排序,枚举相邻两个角度,注意还需要比较最小角和最大角的角度差。 坑点是double精度不够,必须用long double,发现sc...

HDU-3629-Convex-计算几何

题意:N个点求凸四边形的个数 思路:可以先求出凹包的个数,然后总数减去凹包个数,凹包是一个点在一个三角形中。可以枚举点i看有多少个三角形将他包在里面。求三角形时可以用到极角排序方法。 #inclu...

极角排序、计算两个多边形的面积并

极角排序、计算两个多边形的面积并

HDU 5784 How Many Triangles 极角排序

HDU 5784 How Many Triangles 极角排序 Alice has n points in two-dimensional plane. She wants to know how ...

极角排序

#include #include #include #include #include using namespace std; struct point { long long ...

HDU 3532 Max Angle(计算几何——极角排序)

传送门 Max AngleTime Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T...

极角排序

前两天做个题,一直WA,不知道是不是因为极角排序用的atan2伤精度的问题,其实我觉得不应该 T T。。 这里讲了几种极角排序方法,http://www.csie.ntnu.edu.tw/~u9...

Codeforces 598C. Nearest vectors【高精度几何】

C. Nearest vectors time limit per test 2 seconds memory limit per test 256 megabytes input sta...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)