# 【Educational Codeforces Round 1C】【计算几何-极角排序 atan2 long double】Nearest vectors 平面图上原点引出角度最小的两个

C. Nearest vectors
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Sample test(s)
input
4
-1 0
0 -1
1 0
1 1

output
3 4

input
6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6

output
6 5

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n;
struct A
{
int o;
int x,y;
long double atan2;
}a[N];
bool cmp(A a,A b)
{
return a.atan2<b.atan2;
}
/*这组数据会使得出现两个极其接近的
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252*/
LL K(LL x){return x*x;}
void Test()
{
A a,b,c,d;
scanf("%d%d",&a.x,&a.y);
scanf("%d%d",&b.x,&b.y);
scanf("%d%d",&c.x,&c.y);
scanf("%d%d",&d.x,&d.y);
LL top1=K(a.x*b.x+a.y*b.y);
LL top2=K(c.x*d.x+c.y*d.y);
LL bot1=(LL)(a.x*a.x+a.y*a.y)*(b.x*b.x+b.y*b.y);
LL bot2=(LL)(c.x*c.x+c.y*c.y)*(d.x*d.x+d.y*d.y);
printf("%lld/%lld\n",top1,bot1);
printf("%lld/%lld\n",top2,bot2);
}
void Atan2()
{
printf("%lf\n",atan2(0,1));//0
printf("%lf\n",atan2(1,0));//PI/2
printf("%lf\n",atan2(0,-1));//PI
printf("%lf\n",atan2(-1e-8,-1));//-PI
printf("%lf\n",atan2(-1,0));//-PI/2
}
int main()
{
//Test();
//Atan2();
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
a[i].o=i;
scanf("%d%d",&a[i].x,&a[i].y);
a[i].atan2=atan2(a[i].y,a[i].x);
}
sort(a+1,a+n+1,cmp);a[n+1]=a[1];
const long double PI2=acos(-1.0)*2;
long double Angle=PI2+0.1;
int X,Y;
for(int i=1;i<=n;i++)
{
long double angle=a[i+1].atan2-a[i].atan2;
if(angle<0)angle+=PI2;
if(angle<Angle)
{
Angle=angle;
X=a[i].o;
Y=a[i+1].o;
}
}
printf("%d %d\n",X,Y);
}
return 0;
}
/*
【trick&&吐槽】
1，atan2还是很棒哒
2，long double也是吊吊哒

【题意】

【类型】

【分析】
1，atan2（纵坐标y，横坐标x）可以返回一个（0,0）->（x,y）的角度哈希值——注意！纵坐标在前，横坐标在后。
atan2的自变量是任意坐标值，然而不能包括原点本身，否则会有排序出错。
atan2的因变量是(-PI,PI]之间的值

printf("%lf\n",atan2(0,1));//0
printf("%lf\n",atan2(1,0));//PI/2
printf("%lf\n",atan2(0,-1));//PI
printf("%lf\n",atan2(-1e-8,-1));//-PI
printf("%lf\n",atan2(-1,0));//-PI/2

2，long double还是很好用，可以用c++输出哦

3，这题更高的精度可以通过分数类实现，以下给出zimpha的大分数大小比较代码
static int cmp(LL n1,LL d1,LL n2,LL d2)
{
if(!(n1 && n2))return n1==n2?0:n1<n2?-1:1;
if(n1>0 ^ n2 >0)return n1<0?-1:1;
if(n1<0) return rc(d1,-n1,d2,-n2);
return rc(d2,n2,d1,n1);
}
static int rc(LL n1,LL d1,LL n2,LL d2)
{
LL k1=n1/d1,k2=n2/d2;
if(k1!=k2)return k1<k2?-1:1;
LL r1=n1%d1,r2=n2%d2;
if(r1&&r2) return rc(d2,r2,d1,r1);
if(r1 && !r2)return 1;
if(r2 && !r1)return -1;
return 0;
}

【时间复杂度&&优化】
O(nlogn)

【数据】
4
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252

a.x*b.x+a.y*b.y=
*/

• 本文已收录于以下专栏：

举报原因： 您举报文章：【Educational Codeforces Round 1C】【计算几何-极角排序 atan2 long double】Nearest vectors 平面图上原点引出角度最小的两个 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)