【HDU5222 2015赛码冠军杯I】【并查集找双连通 + tarjan求强连通】Exploration 双向边只能走一边是否图上存在环

原创 2015年11月19日 17:23:21


Exploration

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1349    Accepted Submission(s): 363


Problem Description
Miceren likes exploration and he found a huge labyrinth underground! 

This labyrinth has N caves and some tunnels connecting some pairs of caves. 

There are two types of tunnel, one type of them can be passed in only one direction and the other can be passed in two directions. Tunnels will collapse immediately after Miceren passing them. 

Now, Miceren wants to choose a cave as his start point and visit at least one other cave, finally get back to start point. 

As his friend, you must help him to determine whether a start point satisfing his request exists.
 

Input
The first line contains a single integer T, indicating the number of test cases.

Each test case begins with three integers N, M1, M2, indicating the number of caves, the number of undirectional tunnels, the number of directional tunnels. 

The next M1 lines contain the details of the undirectional tunnels. Each line contains two integers u, v meaning that there is a undirectional tunnel between u, v. (u  v) 

The next M2 lines contain the details of the directional tunnels. Each line contains integers u, v meaning that there is a directional tunnel from u to v. (u  v)

T is about 100.

1  N,M1,M2  1000000.

There may be some tunnels connect the same pair of caves.

The ratio of test cases with N > 1000 is less than 5%.
 

Output
For each test queries, print the answer. If Miceren can do that, output "YES", otherwise "NO".
 

Sample Input
2 5 2 1 1 2 1 2 4 5 4 2 2 1 2 2 3 4 3 4 1
 

Sample Output
YES NO
Hint
If you need a larger stack size, please use #pragma comment(linker, "/STACK:102400000,102400000") and submit your solution using C++.
 

Source
 


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e6+10,M=4e6+10,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m1,m2,x,y;
int first[N],id;
int w[M],c[M],nxt[M];
int f[N];
bool e[N],vis[N],flag;
int find(int x)
{
	return f[x]==x?x:f[x]=find(f[x]);
}
void ins(int x,int y)
{
	++id;
	w[id]=y;
	nxt[id]=first[x];
	first[x]=id;
}
bool tarjan(int x)
{
	vis[x]=1;
	e[x]=1;
	for(int z=first[x];z;z=nxt[z])
	{
		int y=w[z];
		if(vis[y]==0&&tarjan(y))return 1;
		if(e[y])return 1;
	}
	e[x]=0;
	return 0;
}
int main()
{
	scanf("%d",&casenum);
	for(casei=1;casei<=casenum;++casei)
	{
		scanf("%d%d%d",&n,&m1,&m2);
		for(int i=1;i<=n;i++)f[i]=i;
		flag=0;
		for(int i=1;i<=m1;i++)
		{
			scanf("%d%d",&x,&y);
			x=find(x);
			y=find(y);
			if(x==y)flag=1;
			else f[y]=x;
		}
		if(flag)
		{
			for(int i=1;i<=m2;i++)scanf("%*d%*d");
			printf("YES\n");
			continue;
		}
		for(int i=1;i<=n;i++)
		{
			f[i]=find(i);
			first[i]=0;
			vis[i]=0;
			e[i]=0;
		}
		for(int i=1;i<=m2;i++)
		{
			scanf("%d%d",&x,&y);
			x=f[x];
			y=f[y];
			ins(x,y);
		}
		for(int i=1;i<=n;i++)if(vis[i]==0&&tarjan(i))
		{
			flag=1;
			break;
		}
		puts(flag?"YES":"NO");
	}
	return 0;
}
/*
【trick&&吐槽】
对于问题,如果其有多个因素怎么办?简化问题,拆开考虑!

【题意】
给你一个图,有n(1e6)个点,m1(1e6)条双向边,m2(1e6)条单向边。
对于双向边,只能走某个方向,即正着走过这条边就不能再反着走。
问你这个图上,是否可以从一点走回自己。

【类型】
并查集+强连通分量

【分析】
简化问题的思想很重要!
如果只有双向边,求是否有环即可,可以用并查集实现。
如果只有单向边,求是否有强连通分量即可,可以用tarjan实现。

现在两者都有,我们该怎么办?
我们可以先对于双向边并查集找环,找到环肯定YES,找不到环也把存在双向边的缩成了一个点。
事实上,这些点之间确实相当于一个点。
于是基于这个缩点后的结果,我们再根据单向边找强连通分量,这道题就做完啦,做完啦!

【时间复杂度&&优化】
O(n+m1+m2)

*/


版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^

Tarjan(无向图)有向图缩环/求(边双)强连通分量

例题 直接考虑spfa的话要存状态(每个点只能拿一次),这样压根没办法显然走到一个环里就可以把这个环全部拿掉,这样的话我们将有向图变为有向无环图,就可以spfa了。 那么问题来了,怎么缩环。Tar...
  • jokerwyt
  • jokerwyt
  • 2016年09月12日 19:15
  • 1076

连通性Tarjan算法 双连通与强连通

/*     author:yjc     time:2014/3/29     title:双连通性算法     双连通:定义DFN(u)为u在搜索树(以下简称为树)中被遍历到的次序号。 ...
  • u011021130
  • u011021130
  • 2014年05月07日 23:39
  • 801

tarjan算法(边的双连通分量)

hiho链接:http://hihocoder.com/contest/hiho53/problem/1 边的双连通分量定义:对于一个无向图的子图,当删除其中任意一条边后,不改变图内点的连通...
  • qwe2434127
  • qwe2434127
  • 2015年08月09日 18:05
  • 1367

Tarjan三大算法之双连通分量(双连通分量)

定义: 对于一个连通图,如果任意两点至少存在两条点不重复路径,则称这个图为点双连通的(简称双连通);如果任意两点至少存在两条边不重复路径,则称该图为边双连通的。点双连通图的定义等价于任意两条边都同在...
  • fuyukai
  • fuyukai
  • 2016年05月03日 16:18
  • 9270

超详细Tarjan算法总结,求强连通分量,割点,割边,有重边的割边

Tarjan是一个人,他一身中发明了很多算法,就这几个算法最为出名。 1、求有向图的强连通分量,那么什么是强连通分量呢,就是一个顶点集合,任意两个顶点间都可以互相到达。如果图中任意两点可以互相到达,则...
  • lw277232240
  • lw277232240
  • 2017年06月14日 19:50
  • 436

强连通分量及缩点tarjan算法解析

强连通分量: 简言之 就是找环(每条边只走一次,两两可达) 孤立的一个点也是一个连通分量   使用tarjan算法 在嵌套的多个环中优先得到最大环( 最小环就是每个孤立点)   定义: int Ti...
  • qq574857122
  • qq574857122
  • 2013年11月16日 22:49
  • 11358

poj 3895 Cycles of Lanes 修改tarjan算法求图中最大环

修改tarjan算法求图中最大环
  • sepNINE
  • sepNINE
  • 2015年04月07日 11:58
  • 1011

双DFS求强连通分量

用双DFS实现强连通分量是3个方法中比较好理解的。注意事项: 1.读入文件时,我用是fstream,流的方式读入! 2.如果是数据集中没有别的多余符号,可以直接读入。若是由逗号等符号分隔开,我用的是C...
  • zzuchengming
  • zzuchengming
  • 2015年07月07日 20:43
  • 1039

判断无向图是否有环路的方法 -并查集 -BFS

判断一个无向图是否有环,可以通过并查集或者带颜色标记的BFS来实现。 本文将讨论两种方法的实现原理,并给出具体代码。...
  • xyt8023y
  • xyt8023y
  • 2015年06月01日 16:14
  • 2356

求强连通子图的方法以及简单实现

刚学 其实操作很简单 正向建立一个图 跑一遍 标记上时间 然后反过来再跑一遍(注意有可能区域不联通) 标记mark Korasaju algorithm #include #i...
  • qq_34271269
  • qq_34271269
  • 2016年07月26日 23:52
  • 670
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【HDU5222 2015赛码冠军杯I】【并查集找双连通 + tarjan求强连通】Exploration 双向边只能走一边是否图上存在环
举报原因:
原因补充:

(最多只允许输入30个字)