关闭

【HDU5213 BestCoder Round 39D】【莫队算法+容斥】Lucky 两个区间各选一个数使得和为K的方案数

518人阅读 评论(0) 收藏 举报
分类:
#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=3e4+10,M=12e4+10,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m,K,g;
int l1,r1,l2,r2;
struct A
{
	int o,v,id,l,r;
	A(){}
	A(int o_,int v_,int id_,int l_,int r_){o=o_;v=v_;id=id_;l=l_;r=r_;}
	bool operator < (const A& b)const
	{
		if(id!=b.id)return id<b.id;
		return r<b.r;
	}
}a[M];
int v[N];
int num[N];
int ans[N];
inline int ins(int p)
{
	if(v[p]<K)
	{
		++num[v[p]];
		return num[K-v[p]];
	}
	else return 0;
}
inline int del(int p)
{
	if(v[p]<K)
	{
		--num[v[p]];
		return num[K-v[p]];
	}
	else return 0;
}
int main()
{
	while(~scanf("%d%d",&n,&K))
	{
		int len=sqrt(n);
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&v[i]);
			num[i]=0;
		}
		scanf("%d",&m);
		g=0;for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
			a[i].id=a[i].l/len;
			a[++g]=A(i,1,l1/len,l1,r2);
			a[++g]=A(i,-1,l1/len,l1,l2-1);
			a[++g]=A(i,-1,(r1+1)/len,r1+1,r2);
			if(r1+1<=l2-1)a[++g]=A(i,1,(r1+1)/len,r1+1,l2-1);
			ans[i]=0;
		}
		sort(a+1,a+g+1);
		int ANS=0;
		int l=a[1].l;
		int r=a[1].l-1;
		for(int i=1;i<=g;i++)
		{
			while(l>a[i].l)ANS+=ins(--l);
			while(r<a[i].r)ANS+=ins(++r);
			while(l<a[i].l)ANS-=del(l++);
			while(r>a[i].r)ANS-=del(r--);
			ans[a[i].o]+=ANS*a[i].v;
		}
		for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
	}
	return 0;
}
/*
【trick&&吐槽】
果然题目难度都只不过是一步步升级而来的呀。
会了莫队之后,只要再学会容斥一下这道题就能做出来了哇!
加油~

【题意】
T(5)组数据
每组数据给你n(1<=n<=30000)个数字,每个数字都在[1,n]之间。
并且有m(1<=m<=30000)个询问。
还告诉你一个数字K(2<=k<=2n且k为奇数)。
对于第i个询问,给你2个区间,
[l1~r1] [l2~r2],数据保证1<=l1<=r1<l2<=r2<=n
让你求出有多少对pair(a[x],a[y]),使得——
a[x]在[l1,r1],a[y]在[l2,r2]且a[x]+a[y]==K.

【类型】
莫队算法

【分析】
这道题设计到区间询问,而且可以离线处理。于是我们很自然地想到莫队算法。
我们发现数字的范围很小,于是我们可以直接计数1~n的数分别是多少个。
然后因为K为奇数,所以就自然不会需要考虑一个数和自己自成pair。

这道题有一个需要处理的问题,就是一般的莫队是只有一个区间,而这道题却有两个区间,该怎么办?
于是我们还需要——容斥。

我们定义符号f(a,b)表示询问区间为a,b下的答案,
其实更准确的意思是,在这个区间选择两个为a[i],a[j],且i<j的,且a[i]+a[j]==K的方案数
并且用+表示集合的并。
对于f(a,a),我们可以用莫队算法很容易地求得。
我们定义a=(l1,r1),b=(l2,r2),c=(r1+1,l2-1),
(这道题的数据保证了1<=l1<=r1<l2<=r2<=n,于是就不会出现f()内区间的右界小于左界的情况。)
那么f(a,b)则可以拆分成f(a+c+b,a+c+b)-f(a+c,a+c)-f(c+b,c+b)+f(c,c)。
(ps:这个容斥可以通过画一个3*3的矩阵来理解哦~)
于是一个询问就被我们拆成了4部分,套下莫队算法,这道题就可以轻松AC啦!

【时间复杂度&&优化】
O(msqrt(n))

*/

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:270764次
    • 积分:8287
    • 等级:
    • 排名:第2395名
    • 原创:555篇
    • 转载:0篇
    • 译文:0篇
    • 评论:135条
    文章分类
    最新评论