【Codeforces Round 299 (Div 2)D】【KMP 本质是最前与最后匹配】Tavas and Malekas 长度为n的匹配串被模板串多位点覆盖的匹配串个数

原创 2015年11月20日 16:47:19
D. Tavas and Malekas
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Tavas is a strange creature. Usually "zzz" comes out of people's mouth while sleeping, but string s of length n comes out from Tavas' mouth instead.

Today Tavas fell asleep in Malekas' place. While he was sleeping, Malekas did a little process on s. Malekas has a favorite string p. He determined all positions x1 < x2 < ... < xk where p matches s. More formally, for each xi (1 ≤ i ≤ k) he condition sxisxi + 1... sxi + |p| - 1 = pis fullfilled.

Then Malekas wrote down one of subsequences of x1, x2, ... xk (possibly, he didn't write anything) on a piece of paper. Here a sequence b is a subsequence of sequence a if and only if we can turn a into b by removing some of its elements (maybe no one of them or all).

After Tavas woke up, Malekas told him everything. He couldn't remember string s, but he knew that both p and s only contains lowercase English letters and also he had the subsequence he had written on that piece of paper.

Tavas wonders, what is the number of possible values of s? He asked SaDDas, but he wasn't smart enough to solve this. So, Tavas asked you to calculate this number for him.

Answer can be very large, so Tavas wants you to print the answer modulo 109 + 7.

Input

The first line contains two integers n and m, the length of s and the length of the subsequence Malekas wrote down (1 ≤ n ≤ 106 and0 ≤ m ≤ n - |p| + 1).

The second line contains string p (1 ≤ |p| ≤ n).

The next line contains m space separated integers y1, y2, ..., ym, Malekas' subsequence (1 ≤ y1 < y2 < ... < ym ≤ n - |p| + 1).

Output

In a single line print the answer modulo 1000 000 007.

Sample test(s)
input
6 2
ioi
1 3
output
26
input
5 2
ioi
1 2
output
0
Note

In the first sample test all strings of form "ioioi?" where the question mark replaces arbitrary English letter satisfy.

Here |x| denotes the length of string x.

Please note that it's possible that there is no such string (answer is 0).


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T> inline void gmax(T &a,T b){if(b>a)a=b;}
template <class T> inline void gmin(T &a,T b){if(b<a)a=b;}
const int N=1e6+10,M=0,Z=1e9+7,ms63=1061109567;
int n,m,g;
char s[N];
int nxt[N];
int p[N];
bool e[N];
void getnxt()
{
	int j=0;nxt[1]=0;
	for(int i=2;i<=m;++i)
	{
		while(j&&s[j+1]!=s[i])j=nxt[j];
		if(s[j+1]==s[i])++j;
		nxt[i]=j;
	}
	MS(e,0);
	for(int p=m;p;p=nxt[p])e[p]=1;
}
int solve()
{
	for(int i=g;i>=1;--i)
	{
		int dis=p[i+1]-p[i];
		if(dis>=m)n-=m;
		else
		{
			int match=m-dis;
			if(!e[match])return 0;
			else n-=dis;
		}
	}
	LL ans=1;
	while(n--)ans=ans*26%Z;
	return ans;
}
int main()
{
	while(~scanf("%d%d",&n,&g))
	{
		scanf("%s",s+1);m=strlen(s+1);
		getnxt();
		for(int i=1;i<=g;++i)scanf("%d",&p[i]);p[g+1]=n+1;
		printf("%d\n",solve());
	}
	return 0;
}

/*
【题意】
给定一个字符串,作为匹配串但是只长度为n(1<=n<=1e6),(所有字符仅为'a'~'z')。
在这个字符串中,已知给定的子串s至少出现了g次(0<=g<=n-|s|+1),并且给你s出现的g次分别是在匹配串的什么位置。
问你匹配串有多少种构成方式。

【类型】
KMP

【分析】
难度1:如果g=0,显然答案是26^n。
难度2:如果任意两个子串的头位置相差都至少是m,显然答案是26^(n-m*g)
难度3:现在子串之间产生了位置冲突。
	也就是"子串a,子串b",子串a的尾巴与子串b的头部叠在了一起。
	而事实上,子串a=子串b=串s。
	假设这两个串的头端点相差了dis,重叠部分的长度显然就是m-dis,设为match。
	那么我们其实只需要验证,串s的最前match位与最后match位是否相同。
	天哪,这就是KMP所可以简单实现的功能!
	对s串做KMP,从尾巴开始沿着fail指针nxt向上跳,设一个能跳到的位置为pos,
	基于KMP,那么就有,串s的最前pos位与最后pos位相同,我们打上标记即可。
	我们查看标记,如果发现其不满足题目要求,那么答案就是0,
	否则我们就有dis长度的串也是固定的。用总的长度n减去。
	这样最后的答案就是26^n,现在这个n表示没有被s覆盖过、决定过的长度。	

*/


版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^

大话数据结构——串

串(string)是由零个或多个字符组成的有限序列,又名字符串。 字符串有很多函数,replace、ToUpper、ToLower(转小写)、Trim(去掉两边空格)、IndexOf(从左到右查找子...
  • u013159040
  • u013159040
  • 2016年06月12日 11:46
  • 619

数据结构——串(朴素的模式匹配算法、KMP模式匹配算法)

提示:以下内容不适合零基础人员,仅供笔者复习之用。 概要: 串是由零个或多个字符组成的有限序列,又名叫字符串。 一、串的比较     给定两个串,s = "a1a2.....an",t="b1...
  • daijin888888
  • daijin888888
  • 2017年04月20日 16:03
  • 1097

KMP算法 串的模式匹配算法优秀总结

转载大神的博客受益匪浅 这几天学习kmp算法,解决字符串的匹配问题,开始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年05月20日 12:21
  • 1348

串的匹配:朴素匹配&KMP算法

引言 字符串的模式匹配是一种常用的操作。模式匹配(pattern matching),简单讲就是在文本(text,或者说母串str)中寻找一给定的模式(pattern)。通常文本都很大,而模式则比较短...
  • zhangxiangDavaid
  • zhangxiangDavaid
  • 2014年07月23日 22:30
  • 2256

KMP 解决串的模式匹配问题

KMP本身不复杂,但网上绝大部分的文章(包括本文的2011年版本)把它讲混乱了。下面,咱们从暴力匹配算法讲起,随后阐述KMP的流程 步骤、next 数组的简单求解 递推原理 代码求解,接着基于next...
  • txl16211
  • txl16211
  • 2014年11月01日 21:11
  • 2053

串匹配-BF算法

今天看了一下数据结构中串的相关知识,着重看了一下BF算法和KMP算法,虽然说是看,但是对于KMP算法中next的值的怎么得来的,还是没有看懂只记得当初学的时候,大家说是离散数学上的知识,唉,现在又忘光...
  • crazy_yyyyy
  • crazy_yyyyy
  • 2016年01月17日 11:27
  • 1717

Codeforces Round #299 (Div. 2) C. Tavas and Karafs

【题意】这题看了好久好久!其实就是个二分水题! 首先给出a,b,n 这是一个由a开头,b为公差,长度无限的等差数列 然后n个询问 输入l,t,m 取这个数列从l开始,m个数,每一次这个数...
  • just_sort
  • just_sort
  • 2016年05月09日 21:02
  • 204

字符串的匹配和查找

字符串的匹配和查找 1.int preg_match ( string $pattern , string $subject [, array $matches [, int $flags ]] ) ...
  • h1023417614
  • h1023417614
  • 2014年04月02日 20:35
  • 2816

简单讲解KMP单模式匹配与AC算法多模式匹配(KMP篇)

前言 本篇是对于KMP单模式匹配以及AC算法多模式匹配的简单讲解,KMP算法与AC算法是关键字检索中的常见算法,能够快速而高效地查找出目标字符串中的多个关键字的匹配情况,而要检索的关键字通常被称为模...
  • class_brick
  • class_brick
  • 2017年01月12日 23:11
  • 651

AC自动机——多模式串的匹配

描述 AC自动机主要用于解决多模式串的匹配问题,是字典树(trie树)的变种,一种伪树形结构(有向图)。 trie图是对AC自动机的一种改造,使得图中每个结点都有字符集个数条出边。 trie图上的...
  • sinceseto
  • sinceseto
  • 2016年04月06日 11:24
  • 408
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【Codeforces Round 299 (Div 2)D】【KMP 本质是最前与最后匹配】Tavas and Malekas 长度为n的匹配串被模板串多位点覆盖的匹配串个数
举报原因:
原因补充:

(最多只允许输入30个字)